Symbolic dynamics, and in particular β-expansions, are a ubiquitous tool in studying more complicated dynamical systems. Applications include number theory, fractals, information theory, and data storage.
In this thesis we will explore the basics of dynamical systems with a special focus on topological dynamics. We then examine symbolic dynamics and β-transformations through the lens of sequence spaces. We discuss observations from recent literature about how matching (the property that the itinerary of 0 and 1 coincide after some number of iterations) is linked to when Tβ,⍺ generates a subshift of finite type. We prove the set of ⍺ in the parameter space for which Tβ,⍺ exhibits matching is symmetric and analyze some examples where the symmetry is both apparent and useful in finding a dense set of ⍺ for which Tβ,⍺ generates a subshift of finite type.
Identifer | oai:union.ndltd.org:CALPOLY/oai:digitalcommons.calpoly.edu:theses-4134 |
Date | 01 June 2022 |
Creators | Zieber, Karl |
Publisher | DigitalCommons@CalPoly |
Source Sets | California Polytechnic State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Master's Theses |
Page generated in 0.0018 seconds