Highly connected matroids are consistently useful in the analysis of matroid structure. Round matroids, in particular, were instrumental in the proof of Rota's conjecture. Chapter 2 concerns a class of matroids with similar properties to those of round matroids. We provide many useful characterizations of these matroids, and determine explicitly their regular members.
Tutte proved that a 3-connected matroid with every element in a 3-element circuit and a 3-element cocircuit is either a whirl or the cycle matroid of a wheel. This result led to the proof of the 3-connected splitter theorem. More recently, Miller proved that matroids of sufficient size having every pair of elements in a 4-element circuit and a 4-element cocircuit are spikes. This observation simplifies the proof of Rota's conjecture for GF(4). In Chapters 3 and 4, we investigate matroids having similar restrictions on their small circuits and cocircuits. The main result of each of these chapters is a complete characterization of the matroids therein.
Identifer | oai:union.ndltd.org:LSU/oai:etd.lsu.edu:etd-06302016-110350 |
Date | 21 July 2016 |
Creators | Pfeil, Simon |
Contributors | Oxley, James, Oporowski, Bogdan, Baldridge, Scott, Ding, Guoli, Delzell, Charles, McCarter, Kevin |
Publisher | LSU |
Source Sets | Louisiana State University |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lsu.edu/docs/available/etd-06302016-110350/ |
Rights | unrestricted, I hereby certify that, if appropriate, I have obtained and attached herein a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to LSU or its agents the non-exclusive license to archive and make accessible, under the conditions specified below and in appropriate University policies, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report. |
Page generated in 0.0019 seconds