Return to search

Level Curves of the Angle Function of a Positive Definite Symmetric Matrix

Given a real N by N matrix A, write p(A) for the maximum angle by which A rotates any unit vector. Suppose that A and B are positive definite symmetric (PDS) N by N matrices. Then their Jordan product {A, B} := AB + BA is also symmetric, but not necessarily positive definite. If p(A) + p(B) is obtuse, then there exists a special orthogonal matrix S such that {A, SBS^(-1)} is indefinite. Of course, if A and B commute, then {A, B} is positive definite. Our work grows from the following question: if A and B are commuting positive definite symmetric matrices such that p(A) + p(B) is obtuse, what is the minimal p(S) such that {A, SBS^(-1)} indefinite? In this dissertation we will describe the level curves of the angle function mapping a unit vector x to the angle between x and Ax for a 3 by 3 PDS matrix A, and discuss their interaction with those of a second such matrix.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc28376
Date12 1900
CreatorsBajracharya, Neeraj
ContributorsConley, Charles, Mauldin, R. Daniel, Cherry, William A.
PublisherUniversity of North Texas
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
FormatText
RightsPublic, Copyright, Bajracharya, Neeraj, Copyright is held by the author, unless otherwise noted. All rights reserved.

Page generated in 0.2796 seconds