Neste trabalho demos continuidade ao estudo desenvolvido por Colla (2007) que utilizou-se do arcabouço de álgebra linear com técnicas de fatoração de matrizes esparsas aplicadas à inferência em redes Bayesianas. Com isso, a biblioteca computacional resultante possui uma separação clara entre a fase simbólica e numérica da inferência, o que permite aproveitar os resultados obtidos na primeira etapa para variar apenas os valores numéricos. Aplicamos técnicas de paralelização para melhorar o desempenho computacional, adicionamos inferência para Redes Credais e novos algoritmos para inferência em Redes Bayesianas para melhor eciência dependendo da estrutura do grafo relacionado à rede e buscamos tornar ainda mais independentes as etapas simbólica e numérica. / In this work we continued the study by Colla (2007), who used the framework of linear algebra techniques with sparse matrix factorization applied to inference in Bayesian networks. Thus, the resulting computational library has a clear separation between the symbolic and numerical phase of inference, which allows you to use the results obtained in the rst step to vary only numeric values. We applied parallelization techniques to improve computational performance, we add inference to Credal Networks and new algorithms for inference in Bayesian networks for better eciency depending on the structure of the graph related to network and seek to become more independent symbolic and numerical steps.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-27082013-111753 |
Date | 19 August 2013 |
Creators | Maranhão, Viviane Teles de Lucca |
Contributors | Stern, Julio Michael |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | English |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0019 seconds