Monoklonala antikroppsbaserade läkemedel (mAb) är ett av de snabbast växande segmenten på läkemedelsmarknaden, främst på grund av deras tillämpning inom onkologi, immunologi och hematologi. Traditionellt sker den industriella produktionen av mAb med fed-batch-odling. Detta är en relativt lätthanterlig process med mAb-utbyten på 5-10 g/L, men dess brist på kontroll över kritiska processparametrar (CPP) orsakar höga mAb-förluster på grund av att kvalitetsspecifikationer inte uppfylls. Ökande marknadskrav och regulatoriska förändringar pådriver läkemedelsindustrin iinnovation inom mAb-tillverkningsprocessen, för att nå kontinuerlig tillverkning. För närvarande, som ett övergångssteg till kontinuerlig tillverkning, sker investeringar i intensifierade fed-batch-odlingar. Dessa uppnår högre celldensiteter på cirka 25-30 g/L, men detta är fortfarande mycket lägre än motsvarande mAb-koncentrationer på 130 g/L som kan uppnås med perfusionsprocesser. Andra fördelar med perfusionsprocesser är att de tillåter flexibla produktionsanläggningar och möjliggör en nivå av processkontroll som skulle tillåta realtidstestning av release. För att upprätthålla en perfusionsprocess under de specificerade förhållandena som garanterar den önskade mAb-kvaliteten, måste CPP kontrolleras noggrant. Process Analytical Technologies (PAT) kan mäta CPP i realtid på ett icke-destruktivt sätt. Denna studie undersökte tillämpningen av två PAT, ArgusEye®-sensorerna och Time-gated Raman-spektroskopi, på perfusionsprocesser. Vi visade att ArgusEye®-sensorerna kan användas för att mäta IgG i perfusionsprover med ganska bra korrelation med referensmetoden. Vi har också visat att multivariata Raman-baserade modeller kan konstrueras för att förutsäga flera CPP, baserat på samma spektra. Framförallt belyser denna studie komplexiteten i tillämpningen av dessa PAT för att kontrollera perfusionsprocesser. För ArgusEye® drar vi slutsatsen att för att få exakta mätningar måste vi ta hänsyn till förändringarna i koncentrationen av värdcellsprotein under en perfusionsprocess, eftersom deras ospecifika bindning till sensorerna är den troliga orsaken till variationen i IgG-mätningarna. För de Raman-baserade modellerna, visar denna studie att en stor mängd data krävs för att bygga korrekta prediktionsmodeller, något som rapprterats om i litteraturen. Sammantaget visar denna rapport att dessa PAT har en stor tillämpningspotential, men de måste förbättras ytterligare innan de kan användas som automatiska återkopplingskontrollverktyg. / Monoclonal antibody-based therapeutics (mAb) are one of the fastest-growing segments in the pharmaceutical market, mainly due to their application in oncology, immunology, and hematology. Traditionally, the industrial production of mAb is done with fed-batch cultivation. This is a relatively easy to operate process with mAb yields of 5-10 g/L, but its lack of control over critical process parameters (CPP) causes high mAb losses due to unmet quality specifications. Driven by increasing market demands and regulatory changes, the pharmaceutical industry is innovating in the mAb manufacturing process to reach continuous manufacturing. Currently, as a transition step to continuous manufacturing, the pharmaceutical industry is investing in intensified fed-batch cultivations. They achieve higher cells densities and present yields around 25-30 g/L, but this is still much lower than the equivalent mAb titers of 130 g/L that can be achieved with perfusion processes. Other advantages of perfusion processes are that they allow the existence of flexible production facilities and enable a level of process control that would permit Real-Time Release Testing. To maintain a perfusion process under the specified conditions to guarantee the desired mAb quality, the CPP need to be closely controlled. Process Analytical Technologies (PAT) can measure CPP in real-time and non-destructively. This study evaluated the application of two PAT, the ArgusEye® sensors and Time-gated Raman spectroscopy, on perfusion processes. We showed that the ArgusEye® sensors can be used to measure IgG in perfusion samples with quite good correlation to the reference method. We have also shown that multivariate Raman-based models can be constructed to predict several CPP based on the same spectra. Most importantly, this study highlights the complexity of the application of these PAT to control perfusion processes. For the ArgusEye®, we conclude that to obtain accurate measurements, we need to account for the changes in the concentration of host cell protein during a perfusion process, as their unspecific binding to the sensors is the probable cause for the variation in the IgG measurements. For the Raman-based models, as previously reported in the literature, this study shows that a high volume of data is require to build accurate prediction models. Overall, this report shows that these PAT have a great potential of application, but they need to be further improved prior to their use as automatic feedback control tools.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-348674 |
Date | January 2024 |
Creators | Rebellato Giordano Martim, Fernanda |
Publisher | KTH, Industriell bioteknologi |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-CBH-GRU ; 2024:252 |
Page generated in 0.0034 seconds