Cette thèse s'inscrit dans le cadre d'une collaboration entre l'IRCCyN (UMR 6597) et le laboratoire SMI (Sensory-Motor Interaction, Université d'Aalborg, Dane- mark). L'objectif est de développer des méthodes de décomposition de signaux élec- tromyographiques (EMG). Les applications sont multiples, e.g., l'aide au diagnostic. De tels signaux peuvent être modélisés comme une somme bruitée de I composantes, chacune étant la réponse d'un système linéaire excité par un train d'impulsions. Les paramètres du modèle sont estimés par une technique bayésienne. Les lois a priori des paramètres continus sont choisies de sorte que les lois marginales a posteriori sont analytiques. Dans un premier temps est proposée une méthode déterministe par maxi- misation de la distribution a posteriori. La difficulté majeure consiste en l'estimation des trains d'impulsions. Ceux-ci (paramètres discrets) constituent un espace combinatoire ; la recherche du maximum est traitée par l'algorithme Tabou. Dans un deuxième temps, on souhaite éviter le réglage des paramètres associés à l'algorithme Tabou : l'approche bayésienne couplée aux techniques MCMC fournit un cadre d'étude très efficace. Un algorithme de Gibbs hybride est proposé, dans lequel une étape Metropolis-Hastings sur les trains d'impulsions permet d'éviter un calcul de complexité exponentielle, tout en garantissant l'irréductibilité de la chaîne de Markov. Les techniques issues de l'al- gorithme MCMC pour la déconvolution d'un processus Bernoulli-gaussien sont ap- pliquées. En particulier, le rééchantillonnage d'échelle et la marginalisation des ampli- tudes sont adaptés au modèle physique en tenant compte de la variabilité d'amplitudes des impulsions. Les algorithmes sont validés sur des signaux EMG simulés et expérimentaux.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00521755 |
Date | 04 December 2009 |
Creators | Di, G. |
Publisher | Ecole centrale de nantes - ECN |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0019 seconds