Nous proposons une démarche markovienne d'inférence et de modélisation de dynamiques agraires dans le cadre d'usage de parcelles situées en lisière du corridor forestier reliant les deux parcs nationaux de Ranomafana et d'Andringitra. La préservation de la forêt de la côte est de Madagascar est cruciale, il est donc pertinent de développer des outils permettant de mieux comprendre les dynamiques de déforestation puis de l'usage des parcelles et enfin de leur éventuel retour à l'état de forêt. Nous nous appuyons sur deux jeux de données de terrain établis par l'IRD. Dans ce genre d'étude, une étape préliminaire consiste à construire la matrice de transition empirique, cela s'apparente donc à une modélisation markovienne de la dynamique. Dans ce cadre nous considérons l'approche par maximum de vraisemblance et l'approche bayésienne. Cette der- nière approche nous permet d'intégrer des informations non-présentes dans les données mais reconnues par les spécialistes, elle fait appel à des techniques d'approximation de Monte Carlo par chaînes de Markov (MCMC). Nous étudions les propriétés asymptotiques des modèles obtenus à l'aide de ces deux approches et notamment le temps de convergence vers la loi quasi-stationnaire dans le premier cas et vers la loi stationnaire dans le second. Nous testons différentes hypothèses portant sur les modèles. Cette approche markovienne n'est plus valide sur le deuxième jeu de données, plus étendu, où il a fallu faire appel à une approche semi-markovienne : les lois des temps de séjour dans un état donné ne sont plus nécessairement géométriques et peuvent dépendre de l'état suivant. À nouveau nous faisons appel aux approches par maximum de vraisemblance et bayésienne. Nous étudions le comportement asymptotique de chacun de ces modèles. En termes applicatifs, nous avons pu déterminer les échelles de temps de ces dynamiques.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00870679 |
Date | 02 August 2013 |
Creators | Raherinirina, Angelo |
Source Sets | CCSD theses-EN-ligne, France |
Language | fra |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0019 seconds