<p dir="ltr">To decrease the use of fossil fuels that generate greenhouse gases, there has been a push to find alternative processes for electricity generation. An attractive renewable alternative is to use solar-thermal energy for grid level electricity production. One method used to generate electricity from the conversion of solar-thermal energy is concentrated solar power (CSP) via the power tower paradigm, which involves an array of mirrors that concentrate sunlight to a spot on a tower. The light heats up a heat transfer fluid which later transfers the thermal energy to a working fluid that expands so as to spin a turbine to generate electricity. Current CSP plants have a peak operation temperature of 550℃, but improvements to the heat exchanger are integral to increasing the peak operation temperature of such plants to a 750℃ target. Ceramic/metal composites (cermets) have been proposed for use as heat exchangers in these CSP plants due to the creep resistance of the ceramic component and toughness of the metal component. One potential material that has an attractive combination of properties for this application is the alumina/chromium (Al2O3/Cr) cermet, given the rigidity and creep resistance of the Al2O3 component and the high-temperature toughness of the Cr phase. Compared to other oxidation-resistant oxide/metal cermets, the Al2O3 and Cr components of this cermet have a relatively close average linear thermal expansion match from 25℃ to 750℃, which is advantageous due to the thermal gradients and thermal cycling of the heat exchanger during operation.</p><p dir="ltr">In this dissertation, the Al2O3/Cr cermet was produced via reaction forming (RF) or reactive melt infiltration (RMI). The RF method involves the reaction of Cr2O3 and Al constituent powder mixtures at high temperature and modest pressures to obtain dense Al2O3/Cr plates. The RMI method involves immersing a shaped porous Cr2O3 preform into an Al or Al-Cr alloy bath to infiltrate and react to form Al2O3/Al-Cr plates. For both methods, the plate microstructure was analyzed for the various reaction conditions. The adiabatic temperature increase for the reaction between Cr2O3 and Al liquid or Al-Cr liquid alloys was calculated. Thermal properties (linear coefficient of thermal expansion, heat capacity, thermal diffusivity, thermal conductivity) and mechanical properties for the RF Al2O3/Cr plates were also measured. Lastly, the reaction kinetics between dense, polycrystalline Cr2O3 and a liquid Al-35at% Cr alloy were experimentally determined at various temperatures and compared to models based on different rate-limiting steps.</p>
Identifer | oai:union.ndltd.org:purdue.edu/oai:figshare.com:article/24715005 |
Date | 03 December 2023 |
Creators | Camilla K McCormack (17538078) |
Source Sets | Purdue University |
Detected Language | English |
Type | Text, Thesis |
Rights | CC BY 4.0 |
Relation | https://figshare.com/articles/thesis/REACTION_PROCESSING_AND_CHARACTERIZATION_OF_ALUMINUM_OXIDE_CHROMIUM_CERAMIC_METAL_COMPOSITES/24715005 |
Page generated in 0.0027 seconds