Return to search

The Interaction of Early Growth Response Gene 1 and Myocyte Enhancer Factor 2C in the Murine Brain Cortex

Early growth response gene – 1 (Egr1) encodes a protein widely present in mammalian body, such as connective tissue, cardiac tissue, the liver, and the brain. As a transcription factor (TF), it is involved in processes that take place in the endocrine, digestive, immune, musculo-skeletal and central nervous systems, for instance, B cell maturation upon B cell receptor activation, tendon repair upon mechano-stimulation, and long-term spatial memory formation. In mammalian brains, EGR1 controls the responses to environmental stimuli such as chronic stress and physical contact. It also participates in processes such as long-term memory consolidation and synapse re-structuring. It plays a role in enacting responses and qualities of gene transcription cascades upon neuronal stimulation. Inside the epigenetic realm, EGR1 recruits Ten-eleven translocation methylcytosine dioxygenase 1 (TET1) to remove DNA methylation at target loci. Due to its critical functions during brain development and upon neuronal activation, mis-regulation of EGR1 is associated with neuropsychological disorders such as post-traumatic stress disorder (PTSD) and schizophrenia (SCZ) in humans. In this study, we performed bioinformatics analysis with brain methylomes and predicted EGR1 may interact with myocyte enhancer factor 2C (MEF2C), which is known to be involved in many similar processes as EGR1, such as synapse architecture, cell migration, and learning and memory. EGR1 and MEF2C ChIP-seq data derived from mouse frontal cortex suggest these two proteins may regulate a common set of downstream genes. To begin, co-immunoprecipitation experiments were performed with HEK293T cells co-transfected with EGR1-FLAG and MEF2C-HA tagged constructs, allowing for specific interaction identification without endogenous protein expression interference. Furthermore, co-immunoprecipitation experiments performed with brain tissues additionally indicated the two proteins interact with each other endogenously. Altogether, this study provides protein-protein interaction evidence for EGR1 and MEF2C in cultured HEK293 cells and in the cortices of adult male mice. This information provides a foundation for future examinations of how these two TFs interact to initiate cascading events following neuronal stimulation. / Master of Science / Early growth response gene – 1 (EGR1) encodes a protein that can be found in animals such as fruit flies, mice, rats, and humans. In mammals, it is widely expressed in the cardiovascular, endocrine, digestive, immune, musculo-skeletal and central nervous systems (CNS). Within the CNS, EGR1 is known as an essential transcription factor involved in brain development. More specifically, EGR1 plays a role in how the early brain develops in response to environmental stimuli, formation of synapse architecture and certain types of memories. Many gene networks involved in growth and development rely on EGR1 to regulate functions such as synapse reformation after exposure to the environment. EGR1 is known to have numerous partners with whom it interacts to execute its functions. It is also involved in epigenetic regulation, which is a process by which genes are silenced or activated without changing DNA sequences in the genome. EGR1 may directly interact with TET1 to demethylate EGR1 target sites in the genome, and to increase gene transcription. In memory development, EGR1 plays a key role ensuring short-term auditory fear memory can be converted to long-term memory, and also ensures long-term spatial memory.

In this study, our computational analyses suggest that EGR1 may interact with MEF2C. This work provides evidence of a protein-protein interaction of EGR1 and MEF2C in cultured cells and in the brain cortical areas of mice. Such an interaction may explain why these two genes regulate overlapped biological processes within the brain and sheds lights on how cascading events are initiated following neuronal stimulation.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/105007
Date16 September 2021
CreatorsMurray, Alexander James
ContributorsBiomedical and Veterinary Sciences, Xie, Hehuang David, Fox, Michael A., Ahmed, S. A., Clinton, Sarah, Jarome, Timothy J.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeThesis
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0016 seconds