Aevitas is an industrial wastewater treatment plant that receives about 300 m3/day of mixture of wastewater from different industries. The chemical oxygen demand of higher 600 ppm and the variety of the chemical constitution of industrial wastewater are two significant problems on Aevitas. Therefore, there is a strong need for developing advanced analytical techniques that can identify the specific compounds that are the source of COD. During 10 months, about 75 industrial samples were characterized using a battery of tests including GC/MS, COD, TOC, and pH to identify the chemicals that are main source of COD in the industrial wastewaters. Results showed that the COD of 87% of 75 provided samples from Aevitas plant was higher than 600.
At the first step of process design, activated carbon was used to eliminate the identified organic chemicals from the wastewaters. The maximum and minimum of COD removal (depends on the chemical composition) of the wastewaters were obtained as 94 and 24%, respectively. Moreover, the amount of COD and TOC that can be adsorbed on the surface of 1 gram of the activated carbon were 25 and 7 mg, respectively. Although activated carbon is capable to reduce the COD, its capacity of adsorption is limited. To overcome this problem an alternative process, membrane filtration was applied for COD removal. Two types of crossflow NF (NF270, NF90, NFX, NFW, NFS, TS80, XN45, and
SXN2_L) and RO (BW60 and TW30) membranes in two modules of the spiral wound and flat sheet were used. The filtration results of 11 different industrial wastewaters showed that NF90, TS80, NFX, and NFS were effective in COD removal. However, in terms of output flux NFX and NFS flat sheet were better than others were. Similar to the activated carbon process, the COD removal in filtration process was between 30 and 90%. The obtained results can be used to scale up the membrane filtration process at Aevitas. / Thesis / Master of Chemical Engineering (MChE) / Aevitas is an industrial wastewater treatment plant, which is situated at the City of Brantford.
Every day, this plant receives about 15 trucks of the mixture of wastewaters from many different industries. The input wastewater into the plant should be treated and meet the environmental standard so that it can be discharged into a municipal wastewater plant. Currently, the maximum allowable chemical oxygen demand (COD) for discharging the treated wastewater from Aevitas to the municipal wastewater treatment plant is 600 ppm. Despite the fact, the current system in Aevitas is not efficient to meet this criterion. Thus, we strive to design efficient processes to overcome the problem. To this end, 75 samples were collected from Aevitas to observe the kind of chemicals that are the source of COD and then, two processes including activated carbon adsorption and membrane filtration were used for further reduction of COD. Although activated carbon can reduce the COD, the limited adsorption capacity was a major concern for its long-term application, especially if the COD of influent wastewater is higher than 2000 ppm. Membrane filtration was used as an
alternative for activated carbon and the results showed that membrane could reduce the
COD below 600 in 48% of the cases.
Identifer | oai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/24779 |
Date | January 2019 |
Creators | Alizadeh Kordkandi, Salman |
Contributors | Latulippe, David, Chemical Engineering |
Source Sets | McMaster University |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.0021 seconds