A delay line phase shifter for the 30-70 GHz range is presented that uses an aluminum micro-ribbon array fabricated in the ground plane of a microstrip transmission line. Phase shift is achieved by changing the propagation velocity of an RF signal in the transmission line by controlling the effective permittivity of the substrate. This is done by actuating the micro-ribbons away from the substrate. This phase shifter has the benefits of analog phase shifts and high Figure of Merit. Simulations were done to model the micro-ribbon deflections, transmission line performance and phase shift. Arrays of 5, 10, and 20 μm wide micro-ribbons were fabricated and tested. At 40.80 GHz, the 20 μm wide micro-ribbons had a measured phase shift of 33º with an actuation voltage of 120 V. The corresponding Figure of Merit was a negative value indicating that there was no line loss due to ribbon deflection.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:MWU.1993/2997 |
Date | 18 January 2008 |
Creators | Yip, Joe |
Contributors | Shafai, Cyrus (Electrical and Computer Engineering), Buchanan, Douglas (Electrical and Computer Engineering) Page, S.A. (Physics & Astronomy) |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | en_US |
Detected Language | English |
Page generated in 0.0019 seconds