O processo de digitalização da TV em diversos países do mundo tem contribuído para o aumento do volume de programas de TV, o que gera uma sobrecarga de informação. Consequentemente, o usuário está enfrentando dificuldade para encontrar os programas de TV favoritos dentre as várias opções disponíveis. Diante deste cenário, os sistemas de recomendação destacam-se como uma possível solução. Tais sistemas são capazes de filtrar itens relevantes de acordo com as preferências do usuário ou de um grupo de usuários que possuem perfis similares. Entretanto, em diversas recomendações o interesse do usuário pode depender do seu contexto. Assim, torna-se importante estender as abordagens tradicionais de recomendação personalizada por meio da exploração do contexto do usuário, o que poderá melhorar a qualidade das recomendações. Para isso, este trabalho descreve uma infraestrutura de software de suporte ao desenvolvimento e execução de sistemas de recomendação sensíveis ao contexto para TV Digital Interativa - intitulada de PersonalTVware. A solução proposta fornece componentes que implementam técnicas avançadas para recomendação de conteúdo e processamento de contexto. Com isso, os desenvolvedores de sistemas de recomendação concentram esforços na lógica de apresentação de seus sistemas, deixando questões de baixo nível para o PersonalTVware gerenciar. As modelagens de usuário, e do contexto, essenciais para o desenvolvimento do PersonalTVware, são representadas por padrões de metadados flexíveis usados na TV Digital Interativa (MPEG-7 e TV-Anytime), e suas devidas extensões. A arquitetura do PersonalTVware é composta por dois subsistemas: dispositivo do usuário e provedor de serviços. A tarefa de predição de preferências contextuais é baseada em métodos de aprendizagem de máquina, e a filtragem de informação sensível ao contexto tem como base a técnica de filtragem baseada em conteúdo. O conceito de perfil contextual também é apresentado e discutido. Para demonstrar e validar as funcionalidades do PersonalTVware em um cenário de uso, foi desenvolvido um sistema de recomendação sensível ao contexto como estudo de caso. / The process of digitalization of TV in several countries around the world has, contributed to increase the volume of TV programs offered and it leads, to information overload problem. Consequently, the user facing the difficulty to find their favorite TV programs in view of various available options. Within this scenario, the recommender systems stand out as a possible solution. These systems are capable of filtering relevant items according to the user preferences or the group of users who have similar profiles. However, the most of the recommender systems for Interactive Digital TV has rarely take into consideration the users contextual information in carrying out the recommendation. However, in many recommendations the user interest may depend on the context. Thus, it becomes important to extend the traditional approaches to personalized recommendation of TV programs by exploiting the context of user, which may improve the quality of the recommendations. Therefore, this work presents a software infrastructure in an Interactive Digital TV environment to support context-aware personalized recommendation of TV programs entitled PersonalTVware. The proposed solution provides components which implement advanced techniques to recommendation of content and context management. Thus, developers of recommender systems can concentrate efforts on the presentation logic of their systems, leaving low-level questions for the PersonalTVware managing. The modeling of user and context, essential for the development of PersonalTVware, are represented by granular metadata standards used in the Interactive Digital TV field (MPEG-7 and TV-Anytime), and its extensions required. The PersonalTVware architecture is composed by two subsystems: the users device and the service provider. The task of inferring contextual preferences is based on machine learning methods, and context-aware information filtering is based on content-based filtering technique. The concept of contextual user profile is presented and discussed. To demonstrate the functionalities in a usage scenario a context-aware recommender system was developed as a case study applying the PersonalTVware.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-31052011-171129 |
Date | 18 March 2011 |
Creators | Fábio Santos da Silva |
Contributors | Graça Bressan, Marcel Bergerman, Carlos André Guimarães Ferraz, Rudinei Goularte, Marcelo Knörich Zuffo |
Publisher | Universidade de São Paulo, Engenharia Elétrica, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0023 seconds