L'objectiu de la tesi és estudiar la cinètica de les cristal·litzacions primàries en vidres metàl·lics mitjançant simulacions de tipus phase field. Una cristal·lització primària és una transició de fase sòlid-sòlid on la fase que cristal·litza (fase transformada o fase secundaria) té una composició química diferent de la fase precursora (fase no transformada o fase primària).Les dades experimentals obtingudes a partir de l'estudi calorimètric de cristal·litzacions primàries s'analitzen generalment en el marc del model KJMA (Kolmogorov, Johnson & Mehl, Avrami). Aquest model proporciona l'evolució temporal de la fracció transformada basant-se en tres hipòtesis: - Els nuclis de la fase secundaria estan distribuïts aleatòriament en tot l'espai.- El creixement d'aquests nuclis és isotròpic.- El creixement s'atura únicament per xoc directe (hard impingement).En la cristal·lizació de vidres metàl·lics s'ha observat experimentalment un alentiment de la cinètica respecte del comportament calculat emprant la citada cinètica KJMA. Aquest alentiment s'explica a la literatura en base a que en aquest tipus de transformacions, controlades per difusió, la interacció entre els cristalls no és directa sinó que es produeix a través dels perfils de concentració (soft impingement) i, a més, l'evolució d'aquests perfils de concentració causa canvis en la concentració de la matriu amorfa, estabilitzant la i per tant fent que la nucleació de nous cristalls esdevingui no aleatòria. Diversos autors han proposat modificacions del model KJMA per tal d'intentar superar aquestes limitacions, basats bé en consideracions geomètriques, bé en aproximacions de camp mitjà. A pesar de tot, cap d'aquests models és capaç d'explicar satisfactòriament la cinètica observada en cristal·litzacions primàries. L'objectiu d'aquest treball ha estat la simulació realista de la cinètica de les transformacions primàries per trobar una explicació consistent a les diferències observades entre les dades experimentals i els models teòrics disponibles.Per tal de poder descriure de forma realista el procés de cristal·lització primària s'ha d'estudiar el procés de nucleació i creixement de la fase secundaria alhora que es resol l'equació de difusió en la fase primària. En aquest treball s'ha emprat un model de simulació phase field que permet estudiar aquest sistema introduint una nova variable lligada al camp de concentració que pren dos valors diferents segons es tracti de fase transformada o no transformada. Amb aquest tipus de models també es poden introduir diferents protocols de nucleació i per tant estudiar independentment els efectes de la nucleació en la cinètica. D'aquesta manera s'han realitzat simulacions en 2 i 3 dimensions de cristal·litzacions primàries amb diferents graus de fracció transformada final). Els resultats de les simulacions s'ha comparat amb el model KJMA i, contra el que es preveia, s'ha obtingut un bon acord entre les fraccions transformades del model KJMA i de les simulacions. Donat que el model KJMA no reprodueix satisfactòriament el comportament experimental d'aquest resultat es dedueix que ni el soft impingement ni la nucleació no aleatòria son les responsables de l'alentiment de la cinètica obtingut en cristal·litzacions primàries. Per tal de trobar una explicació físicament convincent del comportament observat experimentalment s'ha aprofundit en l'estudi teòric de les cristali·litzaciones primàries, incloent-hi l'efecte dels canvis composicionals que tenen lloc en la matriu a mesura que la transformació es produeix. Aquest fet, tot i ser conegut a la bibliografia, ha estat sistemàticament ignorat en l'elaboració de models cinètics. En concret, s'ha fet palès que canvis en la composició química de la fase primària han d'afectar de forma radical a la viscositat, que varia fortament a prop de la transició vitrea, i han de produir canvis en les propietats de transport atòmic. Això s'ha modelat a través de l'assumpció d'un coeficient de difusió depenent de la concentració, en base a la relació modificada d'Stokes-Einstein entre la viscositat i el coeficient de difusió. Les simulacions phase-field amb un coeficient de difusió d'aquest tipus donen lloc a una cinètica més lenta i que mostra un acord excel·lent amb la cinètica experimentalment observada en cristal·litzacions primàries de vidres metàl·lics. Per tant, les simulacions phase field confirmen que la cinètica de les cristal·litzacions primàries està controlada fonamentalment pel canvi en les propietats de transport atòmic, mentre que els efectes de soft impingement i nucleació no aleatoria, tot i estar presents, son secundaris. / El objetivo de la tesi es estudiar la cinética de las cristalizaciones primarias en vidrios metálicos mediante simulaciones de tipo phase field. Una cristalización primaria es una transición de fase sólido-sólido donde la fase que cristaliza (fase transformada o fase secundaria) tiene una composición química diferente a la fase precursora (fase no transformada o fase primaria).Los datos experimentales obtenidos a partir del estudio calorimétrico de cristalizaciones primarias se analizan generalmente en el marco del modelo KJMA (Kolmogorov, Johnson & Mehl, Avrami). Este modelo proporciona la evolución temporal de la fracción transformada basándose en tres hipótesis: - Los núcleos de la fase secundaria están distribuidos aleatoriamente en todo el espacio- El crecimiento de estos núcleos es isotrópico- El crecimiento se detiene únicamente por choque directo (hard impingement).En la cristalización de vidrios metálicos se ha observado experimentalmente un retardo de la cinética respecto del comportamiento calculado usando la cinética KJMA. Este retardo se explica en la literatura en base a que en este tipo de transformaciones, controladas por difusión, la interacción entre los cristales no es directa sino que se produce a través de los perfiles de concentración (soft impingement) y, además, la evolución de estos perfiles de concentración causa cambios en la concentración de la matriz amorfa, estabilizándola y por tanto haciendo que la nucleación de nuevos cristales sea no aleatoria. Varios autores han propuesto modificaciones del modelo KJMA para intentar superar estas limitaciones, basados bien en consideraciones geométricas, bien en aproximaciones de campo medio. A pesar de todo, ninguno de estos modelos es capaz de explicar satisfactoriamente la cinética observada en cristalizaciones primarias. El objetivo de este trabajo ha sido la simulación realista de la cinética de las transformaciones primarias para hallar una explicación consistente a las diferencias entre los datos experimentales y los modelos teóricos disponibles.Para describir de manera realista el proceso de cristalización primaria se tiene que estudiar el proceso de nucleación y crecimiento de la fase secundaria a la vez que se resuelve la ecuación de difusión en la fase primaria. En este trabajo se ha usado un modelo de simulación phase-field que permite estudiar este sistema introduciendo una nueva variable ligada al campo de concentración que toma dos valores diferentes según se trate de fase transformada o no transformada. Con este tipo de modelos también se pueden introducir diferentes protocolos de nucleación y por tanto estudiar independientemente los efectos de la nucleación en la cinética. De esta manera se han realizado simulaciones en 2 y 3 dimensiones de cristalizaciones primarias con diferentes grados de fracción transformada final. Los resultados de la simulaciones se han comparado con el modelo KJMA y, en contra de lo que se preveía, se ha obtenido un buen acuerdo entre las fracciones transformadas del modelo KJMA y de las simulaciones. Dado que el modelo KJMA no reproduce satisfactoriamente el comportamiento experimental, de este resultado se deduce que ni el soft impingement ni la nucleación no aleatoria son las responsables del retardo en la cinética obtenido en cristalizaciones primarias.Para encontrar una explicación físicamente convincente del comportamiento observado experimentalmente se ha profundizado en el estudio teórico de las cristalizaciones primarias, incluyendo el efecto de los cambios composicionales que tienen lugar en la matriz a medida que la transformación se produce. Este hecho, aún y ser conocido en la bibliografía, ha sido sistemáticamente ignorado en la elaboración de modelos cinéticos. En concreto, se ha hecho patente que cambios en la composición química de la fase primaria tienen que afectar de forma radical a la viscosidad, que varía fuertemente cerca de la transición vítrea, y tienen que producirse cambios en las propiedades de transporte atómico. Esto se ha modelado a través de la asunción de un coeficiente de difusión dependiente de la concentración, en base a la relación de Stokes-Einstein modificada entre la viscosidad y el coeficiente de difusión. Las simulaciones phsae-field con un coeficiente de difusión de este tipo dan lugar a una cinética más lenta y que muestra un acuerdo excelente con la cinética experimentalmente observada en cristalizaciones primarias de vidrios metálicos. Por tanto, las simulaciones phase-field confirman que la cinética de las cristalizaciones primarias está controlada fundamentalmente por los cambios en las propiedades de transporte atómico, mientras que los efectos de soft-impingement y nucleación no aleatoria, aún y estar presentes, son secundarios. / The aim of this thesis is to study the kinetics of primary crystallization in metallic glasses by means of phase-field simulations. A primary crystallization is a solid-solid phase transformation where the crystallized phase (transformed phase or secondary phase) has a chemical composition different than the precursor phase (untransformed phase or primary phase).Experimental data from calorimetric studies of primary crystallization are usually studied in the framework of the KJMA model (Kolmogorov, Johnson & Mehl, Avrami). This model yields the temporal evolution of the transformed fraction on the basis of three main assumptions: - A random distribution of particle nuclei of the secondary phase- The growth of these nuclei is isotropic- The growth is only halted by direct collisions (hard impingement).In the crystallization of metallic glasses, a slowing down of the kinetics respect the behavior calculated with the KJMA kinetics has been observed. This delay is explained in the literature by the fact that in this kind of transformations, that are diffusion controlled, the interaction between the crystals is not direct but through the concentration profiles (soft impingement) and moreover, the evolution of these profiles causes changes in the concentration of the amorphous matrix, stabilizing it and thus, the nucleation of new nuclei become non random. Several authors had proposed modifications to the KJMA model to try to overcome these limitations, based either on geometrical considerations or in mean field approaches. However, none of these models is able to explain the observed kinetics in primary crystallizations. The aim of this work has been the realistic simulation of the kinetics of primary crystallization to find a explanation to the differences between the experimental data and the available theoretical models.In order to describe in a realistic way the process of a primary crystallization, the nucleation and growth process of the secondary phase has to be studied at the same time that the diffusion equation is solved in the primary phase. In this work, it has been used a phase field model for the simulations that allows to study this system introducing a new variable, coupled to the concentration field, that takes two different values in each of the existing phases. With these kinds of models, different nucleation protocols can also be introduced and thus, independently study the effects of the nucleation in the kinetics. Therefore, 2 and 3 dimensional simulations of primary crystallization have been performed with several degrees of final transformed fraction. The simulation results have been compared with the KJMA model and, unexpectedly, a good agreement between the simulations and the KJMA model has been obtained. As the KJMA model does not reproduce satisfactorily the experimental behavior, from this result can be deduced that neither the soft impingement nor the non random nucleation are the responsible of the slowing down observed in the kinetics of primary crystallization.In order to find a physical convincing explanation of the observed experimental behavior, the theoretical study of primary crystallization has been extended, including the effects of the compositional changes that take place in the matrix as the transformation proceed. This fact, notwithstanding being known in the literature, has been systematically ignored in the development of the kinetics models. In particular, it has become clear that changes in the chemical composition of the primary phase have to radically affect the viscosity, that strongly varies near the glass transition, and some changes in the atomic transport properties must occur. This has been modeled through the assumption of a compositional dependent diffusion coefficient, on the basis of a modified Stokes-Einstein relation between viscosity and diffusion coefficient. Phase field simulations with a diffusion coefficient of this type yield a slower kinetics and show an excellent agreement with the kinetics experimentally observed in primary crystallization of metallic glasses. Thus, phase field simulations confirm that the kinetics of primary crystallization is fundamentally controlled by the changes in the atomic transport properties, while the soft impingement and non random effects, although being present, are secondary.
Identifer | oai:union.ndltd.org:TDX_UPC/oai:www.tdx.cat:10803/6588 |
Date | 15 November 2007 |
Creators | Bruna Escuer, Pere |
Contributors | Pineda Soler, Eloi, Crespo, Daniel, Universitat Politècnica de Catalunya. Departament de Física Aplicada |
Publisher | Universitat Politècnica de Catalunya |
Source Sets | Universitat Politècnica de Catalunya |
Language | English |
Detected Language | Spanish |
Type | info:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/publishedVersion |
Format | application/pdf |
Source | TDX (Tesis Doctorals en Xarxa) |
Rights | ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs., info:eu-repo/semantics/openAccess |
Page generated in 0.0035 seconds