Bibliography: pages 94-99. / This thesis describes work performed to establish and demonstrate a quantitative trace element microanalysis technique for geological material using protons accelerated by the Van de Graaff Accelerator at the National Accelerator Centre (NAC) in Faure near Cape Town. The method relies on the analysis of Proton Induced X-ray Emission (PIXE) spectra, interpreted with the help of the GeoPIXE software package. The use of the Si(Li) energy dispersive detector provides simultaneous multi-element detection at the parts-per-million (ppm) level, and a scanning beam facility permits trace element distributions to be studied at these levels. The calibration of the detector efficiency and the thicknesses of selectable X-ray attenuating filters was performed using pure elemental samples. This involved the accurate determination of the target to detector distance, the thickness of the active volume of the Si(Li) detector crystal, the thicknesses of all the absorbing layers between the sample and the detector crystal, and the assessment of the effects of incomplete charge collection in the detector.
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:uct/oai:localhost:11427/22046 |
Date | January 1995 |
Creators | Van Achterbergh, Esmé |
Contributors | Le Roex, Anton, Gurney, John J |
Publisher | University of Cape Town, Faculty of Science, Department of Geological Sciences |
Source Sets | South African National ETD Portal |
Language | English |
Detected Language | English |
Type | Master Thesis, Masters, MSc |
Format | application/pdf |
Page generated in 0.002 seconds