This thesis presents optical trapping of various single nanoparticles, and the method for integrating the optical trap system into a microfluidic channel to examine the trapping stiffness and to study binding at the single molecule level.
Optical trapping is the capability to immobilize, move, and manipulate small objects in a gentle way. Conventional trapping methods are able to trap dielectric particles with size greater than 100 nm. Optical trapping using nanostructures has overcome this limitation so that it has been of interest to trap nanoparticles for bio-analytical studies. In particular, aperture optical trapping allows for trapping at low powers, and easy detection of the trapping events by noting abrupt jumps in the transmission intensity of the trapping beam through the aperture. Improved trapping efficiency has been achieved by changing the aperture shape from a circle; for example, to a rectangle, double nanohole (DNH), or coaxial aperture. The DNH has the advantage of a well-defined trapping region between the two cusps where the nanoholes overlap, which typically allows only single particle trapping due to steric hindrance.
Trapping of 21 nm encapsulated quantum dot has been achieved which shows optical trapping can be used in technologies that seek to place a quantum dot at a specific location in a plasmonic or nanophotonic structure.
The DNH has been used to trap and unfold a single protein. The high signal-to-noise ratio of 33 in monitoring single protein trapping and unfolding shows a tremendous potential for using the double nanohole as a sensor for protein binding events at a single molecule level. The DNH integrated in a microfluidic chip with flow to show that stable trapping can be achieved under reasonable flow rates of a few µL/min. With such stable trapping under flow, it is possible to envision co-trapping of proteins to study their interactions. Co-trapping is achieved for the case where we flow in a protein (bovine serum albumin – BSA) and co-trap its antibody (anti-BSA). / Graduate / 0544 / 0752 / oskuie@uvic.ca
Identifer | oai:union.ndltd.org:uvic.ca/oai:dspace.library.uvic.ca:1828/4916 |
Date | 05 September 2013 |
Creators | Zehtabi-Oskuie, Ana |
Contributors | Gordon, Reuven |
Source Sets | University of Victoria |
Language | English, English |
Detected Language | English |
Type | Thesis |
Rights | Available to the World Wide Web |
Page generated in 0.0024 seconds