Colonoscopy is a necessary procedure to diagnose diseases in the lower gastrointestinal tract. Nevertheless, there exists a risk of bleeding during the colonoscopy, caused by perforations, diverticuli, post-biopsy complications, and polyps, which could go undetected as the camera is only equipped on the tip of colonoscope. A soft sensor, capable of detecting blood and distinguishing it from other GI fluids, has been developed using optical fibers for blood detection and data transmission. However, the sensor’s numerous optical fibers make it harder for the surgeon to hold and maneuver the colonoscope. In addition, the fibers are fragile and sensitive to external forces. This makes the sensor’s fabrication difficult and signal interpretation less reliable.
Presented in this thesis is a wireless soft blood sensor utilizing deformable polymeric materials and microelectronic technologies. Opto-electronic components and a microcontroller installed on the flexible PCB allow the sensors to sense blood, recognize fluid types, account for the external forces, comply to bending of colonoscope, and wirelessly transmit data. The wireless data transmission is implemented by a millimeter-scale transmitter-receiver module. A Lithium ion battery powers the sensor. Without optical fibers, multiple blood sensors can be installed along the length of colonoscope. Consequently, this increases efficiency and reliability of blood detection while remaining safe for patients without interruption on the clinical workflow. / 2027-05-31T00:00:00Z
Identifer | oai:union.ndltd.org:bu.edu/oai:open.bu.edu:2144/48876 |
Date | 24 May 2024 |
Creators | Palkawong na ayuddhaya, Kamin |
Contributors | Russo, Sheila |
Source Sets | Boston University |
Language | en_US |
Detected Language | English |
Type | Thesis/Dissertation |
Page generated in 0.0031 seconds