Le but de ce travail de thèse est de mieux comprendre les mécanismes de déformation à température ambiante dans les alliages de titane bêta-métastable Ti17 et Ti5553. Les microstructures étudiées sont composées de grains bêta transformé, dans lesquels la phase alpha peut précipiter, selon les relations de Burgers, sous la forme de douze variants différents. Une approche multi-échelles est donc préconisée avec trois niveaux représentatifs: macroscopique, mésoscopique (ex-grains bêta), et microscopique (variants alpha et matrice bêta de chaque grain). Différents modèles à champs moyens sont adaptés pour reproduire le comportement mécanique du Ti17 et du Ti5553. Ces modèles impliquent deux transitions d'échelle, et sont basés sur l'homogénéisation des comportements locaux, avec plusieurs manières de représenter les interactions intergranulaires. Les relations entre microstructures et propriétés mécaniques sont également considérées. Les modèles les plus complexes développés dans cette étude vont permettre de simuler l'anisotropie élastique et l'écoulement visqueux de chaque variant alpha (hcp) et de chaque matrice bêta (bcc), en employant la plasticité cristalline avec des écrouissages de type cinématique et isotrope. L'identification des paramètres matériaux est faite à partir d'une vaste base de données expérimentale provenant du projet PROMITI. Pour comprendre le rôle de chaque phase dans le processus de déformation, un calcul EF a également été fait afin de reproduire l'essai de traction sur une très fine éprouvette plate. Dans cette étude, le niveau mésoscopique est explicitement représenté en reprenant fidèlement la géométrie et l'orientation cristallographique de chaque grain bêta transformé. Des comparaisons entre expérience et simulation sont faites à l'échelle macroscopique pour les courbes contrainte - déformation, ainsi qu'au niveau mésoscopique, en considérant les champs de déplacement hors-plan et les champs de déformation. / The purpose of this PhD work is to investigate deformation mechanisms at room temperature in beta-metastable titanium alloys Ti17 and Ti5553. Studied microstructures are composed of beta-grains, in which alpha phase can precipitate under twelve different variants according to Burgers relationship. A multiscale approach is then proposed with three levels to consider: macroscopic, mesoscopic (prior beta grains) and microscopic (alpha variants and beta matrix of each grain). Different mean field models are adapted to depict Ti17 and Ti5553 mechanical behaviors. These models are based on the two scale-transition homogenization of local behaviors, with various ways of representing intergranular interactions. Relationships between microstructures and mechanical properties are also considered. The most advanced micromechanical models developed in this work depict elastic anisotropy and viscoplastic flow of each hcp alpha variant and each bcc beta matrix, using crystal plasticity with kinematic and isotropic hardening. Identification of material parameters is done using a large experimental database from PROMITI project. To understand the role of each phase in the deformation process, a FE computation was also made to reproduce the uniaxial tensile test of a very thick micro-specimen. In this study, the mesoscopic scale is explicitly represented: each beta grain has a real geometry and crystallographic orientation, according to a measured EBSD map in SEM. Comparisons between experiment and the numerical simulation are made on macroscopic stress - strain curves as well as on the mesoscopic scale, by considering out-of-plane displacement and strain fields.
Identifer | oai:union.ndltd.org:theses.fr/2012ENMP0099 |
Date | 10 December 2012 |
Creators | Martin, Guillaume |
Contributors | Paris, ENMP, Cailletaud, Georges |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.002 seconds