Return to search

Transparent 2-Element 5G MIMO Antenna for Sub-6 GHz Applications

Yes / A dual-port transparent multiple-input multiple-output (MIMO) antenna resonating at sub-6 GHz 5G band is proposed by using patch/ground material as transparent conductive oxide (AgHT-8) and a transparent Plexiglas substrate. Two identical circular-shaped radiating elements fed by using a microstrip feedline are designed using the finite element method (FEM) based highfrequency structure simulator (HFSS) software. The effect of the isolation mechanism is discussed using two cases. In case 1, the two horizontally positioned elements are oriented in a similar direction with a separate ground plane, whereas in case 2, the elements are vertically placed facing opposite to each other with an allied ground. In both cases, the transparent antennas span over a −10 dB band of 4.65 to 4.97 GHz (300 MHz) with isolation greater than 15 dB among two elements. The diversity parameters are also analyzed for both the cases covering the correlation coefficient (ECC), mean effective gain (MEG), diversity gain (DG), and channel capacity loss (CCL). The average gain and efficiency above 1 dBi and 45%, respectively with satisfactory MIMO diversity performance, makes the transparent MIMO antenna an appropriate choice for smart IoT devices working in the sub-6 GHz 5G band by mitigating the co-site location and visual clutter issues. / This work is supported by the Moore4Medical project, funded within ECSEL JU in collaboration with the EU H2020 Framework Programme (H2020/2014-2020) under grant agreement H2020-ECSEL-2019-IA-876190, and Fundação para a Ciência e Tecnologia (ECSEL/0006/2019).

Identiferoai:union.ndltd.org:BRADFORD/oai:bradscholars.brad.ac.uk:10454/18750
Date03 February 2022
CreatorsDesai, A., Palandoken, M., Elfergani, Issa T., Akdag, I., Zebiri, C., Bastos, J., Rodriguez, J., Abd-Alhameed, Raed
Source SetsBradford Scholars
LanguageEnglish
Detected LanguageEnglish
TypeArticle, Published version
Rights© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Page generated in 0.0021 seconds