De nouveaux usages des systèmes de communications sans fils, tels que les réseaux de capteurs ou les voitures autonomes, ont émergé au cours des dernières années. Ces usages sont fondamentalement différents des applications haut-débit actuelles des réseaux cellulaires. La future technologie mobile, la 5G New Radio, introduit donc le concept de numérologie du signal afin de pouvoir satisfaire aux besoin hétérogènes des multiples applications supportées. En effet en supportant différentes numérologies de signaux, l'allocation temps/fréquence des signaux devient plus flexible et le signal transmis peut être adapté en conséquence. Cependant, supporte simultanément différentes numérologies génère de l'interférence et donc distord les signaux. Les filtrages spatiaux, comme la formation de faisceaux, est envisagée en 5G pour limiter l'interférence générée mais pour les communications au-dessus de 6 GHz. Il n'y a cependant pas de solutions proposées pour mes communications en-dessous de 6 GHz. Dans ce travail, des techniques d'atténuation des lobes secondaires sont étudiées pour faciliter le multiplexage des services pour les communications sous 6 GHz. L’interférence entre-utilisateurs est alors contrôlée mais la bande est également mieux utilisée. Une solution innovante, combinant bancs de filtres et orthogonalité complexe, est proposée. L'orthogonalité complexe est garanti grâce à un précodage OFDM qui remplace le précodage OQAM communément utilisé. De plus, le système développé, le Block-Filtered OFDM, utilise un récepteur 5G classique ce qui garantit la retro-compatibilité avec les techniques déjà déployée. Le modèle du BF-OFDM est entièrement décrit et adapté aux normes des réseaux mobiles. De plus, de multiples méthodes de conception des filtres prototypes sont proposées afin de mieux répondre aux besoins des systèmes. La forme d'onde étudiée est également comparée avec les autres solutions de l'état de l'art sur des scénarios d'étude classiques mais également adaptés aux nouveaux enjeux des technologies sans fils. / New use cases for wireless communications recently emerged ranging from massive sensor networks to connected cars. These applications highly differ from typical signals supported by already deployed mobile technologies, which are mainly high data rate pipes. The forthcoming generation of mobile technology, 5G New Radio, introduces the concept of signal numerology so as to properly serve the requirements of the diverse applications it will support. Indeed by considering different numerologies, the time/frequency signal allocation is made more flexible which allows to shape the transmitted signal according to its needs. However, multiplexing signals with different numerologies generates interference and therefore signal distortion. Spatial filtering, such as beamforming, is envisioned for 5G above 6-GHz communications to limit inter-user interference. However, this issue still holds for sub-6 GHz systems where spatial filtering is not considered in 5G.In this work, we consider side lobe rejection techniques to ease service multiplexing in sub-6 GHz bands. Not only it provides inter-user interference mitigation but it also improves the bandwidth use efficiency in bands where frequency is a scarce resource. A novel solution, mixing filter-bank for confined spectrum and complex orthogonality for a straightforward re-use of known-how 4G/5G techniques, is proposed. The complex orthogonality is restored thanks to an OFDM precoding substituting the commonly used Offset-QAM signaling which limits the orthogonality to the real field. Moreover, the proposed solution, named Block-Filtered Orthogonal Frequency Division Multiplexing (BFOFDM), relies on a simple 5G receiver scheme which makes it backward compatible with already deployed technologies.The BF-OFDM system model is fully described and adapted to cellular standards. Besides, different prototype filter designs methods are proposed to either improve the intrinsic interference attenuation or to better confined the spectrum of the transmitted signal. Last but not least, the proposed waveform will be compared with state-of-the-art solutions for both typical and 5G oriented evaluation scenarios such as multi-service coexistence.
Identifer | oai:union.ndltd.org:theses.fr/2019CNAM1237 |
Date | 06 June 2019 |
Creators | Demmer, David |
Contributors | Paris, CNAM, Le Ruyet, Didier |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.1345 seconds