Nowadays, demands for fully integrated and miniaturized RFIC (Radio Frequency Integrated Circuits) have increased in wireless microwave communication system. Passive components such as coupler, divider and filters are always fabricated in outside of ICs due to their bulky sizes, which have been a great barrier to a realization of a fully integrated design. To solve this problem, miniaturization of passive components is one of the big issues at the present time. This paper shows the development of two important microwave passive components, quadrature hybrid and rat-race couplers for LTE lower (698 -960 MHz) and higher (1.71 - 2.70 GHz) frequency bands, which are obtained by replacing quarter-wave (λ/4) transmission line of a conventional coupler by their equivalent coupled line, resulting in significant size reduction. The miniaturized quadrature and rat race couplers are designed and fabricated with a Rogers 4360 substrate as a platform in producing significantly reduction. The design is validated by electromagnetic simulation and measurement. The size of the implemented quadrature hybrid coupler is 30 × 26.8 mm^2 and 14.9 × 12.5 mm^2, which are 82.60 % and 69.03% compared to the conventional couplers for lower and higher frequency band respectively. And, 55.5 × 27.9 mm^2 and 19.2 × 14.8 mm^2 for rat race coupler, which are 79.69 % and 62.35 % compared to the conventional coupler for lower and higher frequency band, respectively. Also, the reflection coefficient and the isolation are as good as conventional one and coupling procedure is similar or better than it.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-98675 |
Date | January 2013 |
Creators | Rahman, Masiur |
Publisher | Linköpings universitet, Fysik och elektroteknik, Linköpings universitet, Tekniska högskolan |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0019 seconds