Return to search

Passivation de la surface du nitrure de gallium par dépôt PECVD d'oxyde de silicium

Le nitrure de gallium (GaN) est un matériau semi-conducteur de la famille III-V à large bande interdite directe, ayant des propriétés électriques et thermiques intéressantes. Grâce à sa large bande interdite, son fort champ de claquage et sa forte vitesse de saturation, il est très convoité pour la réalisation de dispositifs électroniques de puissance et de hautes fréquences pouvant fonctionner à haute température. De plus, grâce au caractère direct de sa bande interdite et son pouvoir d’émission à faible longueur d’onde, il est aussi avantageux pour la réalisation de dispositifs optoélectroniques de hautes performances en émission ou en détection tels que les DELs, les lasers ou les photo-détecteurs.
Les difficultés de son élaboration, les problèmes d’inefficacités du dopage p et les densités élevées de défauts cristallins dans les couches épitaxiées ont constitué pendant longtemps des handicaps majeurs au développement des technologies GaN. Il a fallu attendre le début des années 1990 pour voir apparaître des couches épitaxiales de meilleures qualités et surtout pour obtenir un dopage p plus efficace [I. Akasaki, 2002]. Cet événement a été l’une des étapes clés qui a révolutionnée cette technologie et a permis d’amorcer son intégration dans le milieu industriel.
Malgré l’avancé rapide qu’a connu le GaN et son potentiel pour la réalisation de sources optoélectroniques de haute efficacité, certains aspects de ce matériau restent encore mal maîtrisés, tels que la réalisation de contacts ohmiques avec une faible résistivité, ou encore le contrôle des interfaces métal/GaN et isolant/GaN. Les hétérostructures isolant/GaN sont généralement caractérisées par la présence d’une forte densité d’états de surface (D[indice inférieur it]). Cette forte D[indice inférieur it], aussi rapportée sur GaAs et sur d’autres matériaux III-V, détériore considérablement les performances des dispositifs réalisés et peut induire l’ancrage (‘pinning’) du niveau de Fermi. Elle constitue l’un des freins majeurs au développement d’une technologie MIS-GaN fiable et performante.
Le but principal de ce projet de recherche est l’élaboration et l’optimisation d’un procédé de passivation du GaN afin de neutraliser ou minimiser l’effet de ses pièges. Les conditions de préparation de la surface du GaN avant le dépôt de la couche isolante (prétraitement chimique, gravure, prétraitement plasma etc.), les paramètres de dépôt de la couche diélectrique par PECVD (pression, température, flux de gaz, etc.) et le traitement post dépôt (tel que le recuit thermique) sont des étapes clés à investiguer pour la mise au point d’un procédé de passivation de surface efficace et pour la réalisation d’une interface isolant/GaN de bonne qualité (faible densité d’états de surface, faible densité de charges fixes, bonne modulation du potentiel de surface, etc.). Ceci permettra de lever l’un des verrous majeurs au développement de la technologie MIS-GaN et d’améliorer les performances des dispositifs micro- et optoélectroniques à base de ce matériau. Le but ultime de ce projet est la réalisation de transistors MISFETs ou MIS-HEMTs de hautes performances sur GaN.

Identiferoai:union.ndltd.org:usherbrooke.ca/oai:savoirs.usherbrooke.ca:11143/6735
Date January 2015
CreatorsChakroun, Ahmed
ContributorsJaouad, Abdelatif, Arès, Richard
PublisherUniversité de Sherbrooke
Source SetsUniversité de Sherbrooke
LanguageFrench, English
Detected LanguageFrench
TypeThèse
Rights© Ahmed Chakroun, Attribution - Pas d’Utilisation Commerciale - Partage dans les Mêmes Conditions 2.5 Canada, Attribution - Pas d’Utilisation Commerciale - Partage dans les Mêmes Conditions 2.5 Canada, Attribution - Pas d’Utilisation Commerciale - Partage dans les Mêmes Conditions 2.5 Canada, http://creativecommons.org/licenses/by-nc-sa/2.5/ca/

Page generated in 0.0049 seconds