Return to search

Improving cemented rockfill design in open stoping

Cemented rockfill, CRF, is comprised of sized aggregate mixed with various types and amounts of binder materials. This type of fill with closely controlled specifications is employed for subsequent pillar recovery and improved ground support. / The goal of this study is to improve consolidated rockfill design for bulk mining methods, with Kidd Creek Mines, KCM, as a case study, from a functional and cost point of views. Cemented rockfill at KCM represents approximately 20% of the total extraction costs. Cost cutting initiatives however have to be mindful of the negative if not disastrous effects on grade, recovery, and ground stability that a decline in fill quality can produce. This dictates that any attempt to cut operational costs should be approached in a scientific and orderly fashion. This thesis describes consolidated rockfill improvement steps taken at Kidd Creek to obtain the highest quality fill at the lowest possible cost. / The main trust and achievements in this thesis include: (1) Extensive site investigation and mapping in drift driven through backfill have resulted establishment of four distinct zones in a typical rockfill mass. Structural rockfill design steps using the information obtained from field mapping are then established and implemented at KCM with great success which will be described during this thesis. (2) The main body of this thesis contains significant amounts of laboratory test work, 1750 test specimen, on lower cost binder alternatives. Some of the results obtained from the test work have been implemented at Kidd Creek since late 1992 and have resulted in considerable savings and improved dilution control. (3) Quality control measures and techniques in three main stages, surface plant, during transportation, and most importantly during placement are also established. (4) CRF structural design optimization steps are identified through extensive site observation and consultation with other operations. This covers all the steps that should be taken from start to finish to achieve the highest quality rockfill at the lowest possible cost. (5) Extensive field experiments are also carried out to obtain in situ mechanical and dynamical properties of a typical rockfill mass. / This work is based upon field and laboratory studies undertaken within the KCM over a 5 year period. The work has resulted in establishing quality control measures, mix design improvement, and structural design implementation at KCM to achieve the required physical characteristics at the lower operational cost. The in situ and laboratory test resulted in 35% unit cost reduction for KCM rockfill system within last 3 years and a saving of around $4 million on binder cost alone at a rate of $1.3 million/year. The total unit cost has dropped from $12/tonne in 1991 to around $7/tonne in 1995.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.40117
Date January 1996
CreatorsFarsangi, Parviz N.
ContributorsHassani, F. P. (advisor)
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageDoctor of Philosophy (Department of Mining and Metallurgical Engineering.)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 001485071, proquestno: NN12366, Theses scanned by UMI/ProQuest.

Page generated in 0.0094 seconds