Return to search

A Full Multigrid-Multilevel Quasi-Monte Carlo Approach for Elliptic PDE with Random Coefficients

The subsurface flow is usually subject to uncertain porous media structures. However, in most cases we only have partial knowledge about the porous media properties. A common approach is to model the uncertain parameters as random fields, then the expectation of Quantity of Interest(QoI) can be evaluated by the Monte Carlo method.
In this study, we develop a full multigrid-multilevel Monte Carlo (FMG-MLMC) method to speed up the evaluation of random parameters effects on single-phase porous flows. In general, MLMC method applies a series of discretization with increasing resolution and computes the QoI on each of them, the success of which lies in the effective variance reduction. We exploit the similar hierarchies of MLMC and multigrid methods, and obtain the solution on coarse mesh Qcl as a byproduct of the multigrid solution on fine mesh Qfl on each level l. In the cases considered in this thesis, the computational saving is 20% theoretically. In addition, a comparison of Monte Carlo and Quasi-Monte Carlo (QMC) methods reveals a smaller estimator variance and faster convergence rate of the latter method in this study.

Identiferoai:union.ndltd.org:kaust.edu.sa/oai:repository.kaust.edu.sa:10754/644898
Date05 May 2019
CreatorsLiu, Yang
ContributorsSun, Shuyu, Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Hoteit, Ibrahim, Tempone, Raul, Liu, Hailiang
Source SetsKing Abdullah University of Science and Technology
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Rights2020-05-05, At the time of archiving, the student author of this thesis opted to temporarily restrict access to it. The full text of this thesis became available to the public after the expiration of the embargo on 2020-05-05.

Page generated in 0.1088 seconds