<p>We consider systems of complex exponential functions in spaces of square integrable functions. Some classical one-dimensional theory is reviewed, in particular, we emphasize the duality between the Riesz bases of complex exponential functions in $L^2$-spaces and complete interpolating sequences in $PW^2$-spaces of entire functions of exponential type. Basis properties for $L^2$-spaces over planar convex domains are then studied in detail. The convex domain in question is shown to be crucial for what basis properties the corresponding $L^2$-space possesses. We explain some results related to Fuglede's conjecture about existence of orthonormal bases and then a result by Lyubarskii and Rashkovskii regarding Riesz bases for $L^2$-spaces over convex polygons, symmetric with respect to the origin. Finally, we make a modest attempt to apply the techniques by Lyubarskii and Rashkovskii combined with approximation of plurisubharmonic functions using logarithms of moduli of entire functions, to construct a complete system of exponential functions in the space of square integrable functions over a disk. This work is not completed yet.</p>
Identifer | oai:union.ndltd.org:UPSALLA/oai:DiVA.org:ntnu-9517 |
Date | January 2007 |
Creators | Aksnes, Vegard |
Publisher | Norwegian University of Science and Technology, Department of Mathematical Sciences, Institutt for matematiske fag |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, text |
Page generated in 0.0016 seconds