Return to search

Mapeamento semântico com aprendizado estatístico relacional para representação de conhecimento em robótica móvel. / Semantic mapping with statistical relational learning for knowledge representation in mobile robotics.

A maior parte dos mapas empregados em tarefas de navegação por robôs móveis representam apenas informações espaciais do ambiente. Outros tipos de informações, que poderiam ser obtidos dos sensores do robô e incorporados à representação, são desprezados. Hoje em dia é comum um robô móvel conter sensores de distância e um sistema de visão, o que permitiria a princípio usá-lo na realização de tarefas complexas e gerais de maneira autônoma, dada uma representação adequada e um meio de extrair diretamente dos sensores o conhecimento necessário. Uma representação possível nesse contexto consiste no acréscimo de informação semântica aos mapas métricos, como por exemplo a segmentação do ambiente seguida da rotulação de cada uma de suas partes. O presente trabalho propõe uma maneira de estruturar a informação espacial criando um mapa semântico do ambiente que representa, além de obstáculos, um vínculo entre estes e as imagens segmentadas correspondentes obtidas por um sistema de visão omnidirecional. A representação é implementada por uma descrição relacional do domínio, que quando instanciada gera um campo aleatório condicionado, onde são realizadas as inferências. Modelos que combinam probabilidade e lógica de primeira ordem são mais expressivos e adequados para estruturar informações espaciais em semânticas. / Most maps used in navigational tasks by mobile robots represent only environmental spatial information. Other kinds of information, that might be obtained from the sensors of the robot and incorporated in the representation, are negleted. Nowadays it is common for mobile robots to have distance sensors and a vision system, which could in principle be used to accomplish complex and general tasks in an autonomously manner, given an adequate representation and a way to extract directly from the sensors the necessary knowledge. A possible representation in this context consists of the addition of semantic information to metric maps, as for example the environment segmentation followed by an attribution of labels to them. This work proposes a way to structure the spatial information in order to create a semantic map representing, beyond obstacles, an anchoring between them and the correspondent segmented images obtained by an omnidirectional vision system. The representation is implemented by a domains relational description that, when instantiated, produces a conditional random field, which supports the inferences. Models that combine probability and firstorder logic are more expressive and adequate to structure spatial in semantic information.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-13072009-165912
Date30 March 2009
CreatorsFabiano Rogério Corrêa
ContributorsJun Okamoto Junior, Mario Fernando Montenegro Campos, Fabio Gagliardi Cozman, Marcelo Finger, Anna Helena Reali Costa
PublisherUniversidade de São Paulo, Engenharia Mecânica, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0028 seconds