Return to search

Modelos matemáticos para auxílio à tomada de decisão no processo produtivo de Pinus caribaea Morelet var. caribaea Barr. & Golf. na Empresa Florestal Integral Macurije, Pinar del Río, Cuba / Mathematical models to aid decision making in the productive process of Pinus caribaea Morelet var. caribaea Barr. & Golf. at Macurije Integral Forest Company, Pinar del Río, Cuba

Submitted by Mario BC (mario@bc.ufrpe.br) on 2018-08-07T14:26:37Z
No. of bitstreams: 1
Ouorou Ganni Mariel Guera.pdf: 5661294 bytes, checksum: 7f5784536c7d7d0ac07cfad5a29df312 (MD5) / Made available in DSpace on 2018-08-07T14:26:37Z (GMT). No. of bitstreams: 1
Ouorou Ganni Mariel Guera.pdf: 5661294 bytes, checksum: 7f5784536c7d7d0ac07cfad5a29df312 (MD5)
Previous issue date: 2017-07-06 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The objective of this study was to propose models that aid decision making in productive
process of Pinus caribaea var. caribaea Barr. & Golf. through the application of multivariate
techniques, regression analysis, multicriteria decision analysis techniques (MCDA) and
Artificial Neural Networks (ANNs) in different stages of said process. The three stages of the
forest production process (PPF) involved in the present study were: (1) growth, yield and forest survival stage; (2) wood extraction and transport stage, and (3) wood primary transformation stage. Pinus caribaea var. caribaea growth, yield and survival modeling required data from temporary and permanent circular plots of 500 m² of the Macurije Integral Forest Company, in which the following variables were measured: : Diameter at Breast Height - DBH (cm), total height - H (m) and survival - (num. of trees/ha). At this stage, the specie productive capacity classification was carried, Artificial Neural Networks (ANNs) were trained and regression models were adjusted for growth prediction and yield and survival prognosis. At wood extraction and transport stage, the performance of different wood extraction systems and means was evaluated through univariate and multivariate factorial experiments, being cost and productivity the dependent variables obtained by time and movement studies. At the same stage, a Lexicographic Goals Programming model was proposed to assist decision making in harvesting and forest transport planning. At the stage of wood primary transformation in Combate de Tenerías sawmill, regression models were adjusted and ANNs were trained, both for lumber recovery factor prediction and lumber classification. Lumber quality being a discrete ordinal variable, ordinal logistic regression was used for its modeling. The database required for lumber recovery factor modeling was composed by the variables Diameter at Breast Height (DBH), Smallest log diameter (D) and conicity (Con.) obtained from real-time monitoring of wood sawing at the sawmill Combate de Tenerías. The 24 variables predicting lumber quality were measured in pieces obtained at the end the end of sawing process in the same sawmill. The results obtained during the research indicated that multivariate, multicriteria and Artificial Neural Networks techniques are efficient in assisting decision-making in FPP stages considered. ANNs models presented similar or superior performances to the traditional regression models both in prediction (volumetric growth, lumber recovery factor) or prognosis (survival, growth and yield) and in lumber grading. From the results, it was concluded that it is not prudent to assume absolute superiority of ANNs and that opting for the complementarity of both approaches rather than the exclusive use of ANNs, as most comparative research tends to suggest, is far more prudent. Multivariate evaluation of wood extraction machineries performances and the Lexicographic Goal Programming model proposed for timber extraction and transport planning provided a multicriteria support translated into solutions with greater practicality and functionality. / Objetivou-se no presente estudo, propor modelos que auxiliem na tomada de decisões no processo produtivo de Pinus caribaea var. caribaea Barr. & Golf. por meio da aplicação de técnicas multivariadas, análise de regressão, técnicas de análise de decisão multicritério (MCDA) e Redes Neurais Artificiais (RNAs) em diferentes etapas do referido processo. As três etapas do processo produtivo florestal (PPF) envolvidas no presente estudo foram: (1) a fase de crescimento, produção e sobrevivência florestal; (2) a fase de extração e transporte florestal e (3) a fase de transformação primária da madeira. A modelagem de crescimento, produção e sobrevivência da espécie requereu de dados provenientes de parcelas temporárias e
permanentes circulares de 500 m² de plantios de Pinus caribaea var. caribaea da Empresa Florestal Integral Macurije, nas quais foram medidas as variáveis: Diâmetro à Altura de Peito DAP (cm), altura total – H (m) e sobrevivência - (árv./ha). Nessa etapa, foi realizada a classificação da capacidade produtiva da espécie, foram treinadas Redes Neurais Artificiais (RNAs) e foram ajustados modelos de regressão para a predição e prognose de sobrevivência e crescimento e produção florestal. Na etapa de extração e transporte florestal, avaliou-se o desempenho de diferentes meios e sistemas de extração de madeira por meio de experimentos
fatoriais univariados e multivariados sendo custo e produtividade as variáveis dependentes obtidas por estudos de tempo e movimento. Na mesma etapa, se propôs um modelo de programação por metas lexicográficas para auxiliar a tomada de decisão na extração e transporte florestal. Na etapa de transformação primária da madeira na serraria Combate de Tenerías, foram ajustados modelos de regressão e foram treinadas RNAs, tanto para a predição do rendimento em madeira serrada como para a classificação da mesma. A qualidade de madeira serrada sendo uma variável discreta ordinal, a regressão logística ordinal foi utilizada para sua modelagem. A base de dados requerida para a modelagem do rendimento em madeira
serrada foi composta pelas variáveis Diâmetro a Altura do Peito (DAP), Diâmetro menor da tora (D) e conicidade (Con.) obtidas do acompanhamento em tempo real do desdobro da madeira na serraria Combate de Tenerías. As 24 variáveis preditoras da qualidade de madeira serrada foram mensuradas em peças obtidas ao final do processo de desdobro na mesma serraria. Os resultados obtidos ao longo da pesquisa indicaram que as técnicas multivariadas, multicritérios e as Redes Neurais Artificiais são eficientes no auxílio à tomada de decisão nas etapas do PPF consideradas. Os modelos de RNAs apresentaram desempenhos similares ou
superiores aos modelos tradicionais de regressão tanto na predição (crescimento volumétrico; rendimento em madeira serrada) ou prognose (sobrevivência; crescimento e produção florestal) como na classificação da madeira serrada. Através dos resultados obtidos ao longo da pesquisa, concluiu-se que não é prudente assumir a superioridade absoluta das RNAs e que optar pela complementaridade de ambas as abordagens em vez do uso exclusivo das RNAs, como a maioria das pesquisas comparativas tendem a sugerir, é bem mais argucioso. A avaliação multivariada dos desempenhos dos meios de extração de madeira e o modelo de programação por metas lexicográfica proposto para o planejamento de extração e transporte de madeira
proporcionaram um apoio multicritério traduzido em soluções com maior praticidade e funcionalidade.

Identiferoai:union.ndltd.org:IBICT/oai:tede2:tede2/7386
Date06 July 2017
CreatorsGUERA, Ouorou Ganni Mariel
ContributorsSILVA, José Antônio Aleixo da, FERREIRA, Rinaldo Luiz Caraciolo, LAZO, Daniel Alberto Álvarez, VALENÇA, Mêuser Jorge Silva, GADELHA, Fernando Henrique de Lima, MEUNIER, Isabelle Maria Jacqueline, BRAZ, Rafael Leite
PublisherUniversidade Federal Rural de Pernambuco, Programa de Pós-Graduação em Ciências Florestais, UFRPE, Brasil, Departamento de Ciência Florestal
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFRPE, instname:Universidade Federal Rural de Pernambuco, instacron:UFRPE
Rightsinfo:eu-repo/semantics/openAccess
Relation6708762392030887359, 600, 600, 600, 600, 8320097514872741102, -604049389552879283, 2075167498588264571

Page generated in 0.003 seconds