Neste trabalho analisamos a hipótese de diferenciabilidade da função valor-ótimo em uma classe de problemas de otimização dinâmica. A classe de problemas analisada é cálculo variacional com horizonte infinito. O artigo de Benveniste e Scheinkman (1979) é apresentado de forma detalhada, além disso, seu lema fundamental é generalizado ao excluirmos a hipótese de concavidade sobre a função auxiliar. Finalmente, aplicamos alguns resultados estabelecidos por Milgrom e Segal (2002), a fim de obtermos a diferenciabilidade da função valor-ótimo para a mesma classe de problemas, mas de uma nova maneira, ampliando a análise sobre o tema.
Identifer | oai:union.ndltd.org:IBICT/oai:lume.ufrgs.br:10183/7811 |
Date | January 2005 |
Creators | Torrent, Hudson da Silva |
Contributors | Araujo, Jorge Paulo de |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, instname:Universidade Federal do Rio Grande do Sul, instacron:UFRGS |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0017 seconds