Return to search

Kompaktní objekty v kategoriích modulů / Kompaktní objekty v kategoriích modulů

Title: Compact objects in categories of modules Author: Peter Kálnai Department: Department of Algebra Supervisor: Mgr. Jan Žemlička, Ph.D., Department of Algebra Abstract: In the thesis we state baic properties of compact objects in various appropriate categories like categories of modules, stable factor category over a perfect ring and Grothendieck categories. We find a ring R such that the class of dually slender R-modules is closed under direct products under some set-theoretic assumption. Finally, we characterize the conditions, when countably generat- ed projective modules are finitely generated, expressed by their Grothendieck monoid. Keywords: compact, dually slender module, stable module category, projective module, self-small

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:304174
Date January 2012
CreatorsKálnai, Peter
ContributorsŽemlička, Jan, Příhoda, Pavel
Source SetsCzech ETDs
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/masterThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0015 seconds