abstract: Measuring molecular interaction with membrane proteins is critical for understanding cellular functions, validating biomarkers and screening drugs. Despite the importance, developing such a capability has been a difficult challenge, especially for small molecules binding to membrane proteins in their native cellular environment. The current mainstream practice is to isolate membrane proteins from the cell membranes, which is difficult and often lead to the loss of their native structures and functions. In this thesis, novel detection methods for in situ quantification of molecular interactions with membrane proteins are described.
First, a label-free surface plasmon resonance imaging (SPRi) platform is developed for the in situ detection of the molecular interactions between membrane protein drug target and its specific antibody drug molecule on cell surface. With this method, the binding kinetics of the drug-target interaction is quantified for drug evaluation and the receptor density on the cell surface is also determined.
Second, a label-free mechanically amplification detection method coupled with a microfluidic device is developed for the detection of both large and small molecules on single cells. Using this method, four major types of transmembrane proteins, including glycoproteins, ion channels, G-protein coupled receptors (GPCRs) and tyrosine kinase receptors on single whole cells are studied with their specific drug molecules. The basic principle of this method is established by developing a thermodynamic model to express the binding-induced nanometer-scale cellular deformation in terms of membrane protein density and cellular mechanical properties. Experiments are carried out to validate the model.
Last, by tracking the cell membrane edge deformation, molecular binding induced downstream event – granule exocytosis is measured with a dual-optical imaging system. Using this method, the single granule exocytosis events in single cells are monitored and the temporal-spatial distribution of the granule fusion-induced cell membrane deformation are mapped. Different patterns of granule release are resolved, including multiple release events occurring close in time and position. The label-free cell membrane deformation tracking method was validated with the simultaneous fluorescence recording. And the simultaneous cell membrane deformation detection and fluorescence recording allow the study of the propagation of the granule release-induced membrane deformation along cell surfaces. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2018
Identifer | oai:union.ndltd.org:asu.edu/item:51559 |
Date | January 2018 |
Contributors | Zhang, Fenni (Author), Tao, Nongjian (Advisor), Chae, Junseok (Committee member), Borges, Chad (Committee member), Jing, Tianwei (Committee member), Wang, Shaopeng (Committee member), Arizona State University (Publisher) |
Source Sets | Arizona State University |
Language | English |
Detected Language | English |
Type | Doctoral Dissertation |
Format | 143 pages |
Rights | http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0014 seconds