Return to search

Development of Improved Models for Gas Sorption Simulation

Computational chemistry offers one the ability to develop a better understanding of the complex physical and chemical interactions that are fundamental to macro- and mesoscopic processes that are seen in laboratory experiments, industrial processes, and ordinary, everyday life. For many systems, the physics of interest occur at the molecular or atomistic levels, and in these cases, computational modeling and two well refined simulation techniques become invaluable: Monte Carlo (MC) and molecular dynamics (MD). In this work, two well established problems were tackled. First, models and potentials for various gas molecules were produced and refined from first principles. These models, although based on work done previously by Belof et al., are novel due to the inclusion of many-body van der Waals interactions, advanced r-12 repulsion combining rules for treating unlike intra- and intermolecular interactions, and highly-efficient treatment of induction interactions. Second, a multitude of models were developed and countless MD simulations were performed in order to describe and understand the giant frictional anisotropy of d-AlCoNi, first observed by Park et al. in 2005.

Identiferoai:union.ndltd.org:USF/oai:scholarcommons.usf.edu:etd-6112
Date01 January 2013
CreatorsMclaughlin, Keith
PublisherScholar Commons
Source SetsUniversity of South Flordia
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceGraduate Theses and Dissertations
Rightsdefault

Page generated in 0.0025 seconds