Return to search

Robust and efficient techniques for automatic video segmentation.

by Lam Cheung Fai. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1998. / Includes bibliographical references (leaves 174-179). / Abstract also in Chinese. / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Problem Definition --- p.2 / Chapter 1.2 --- Motivation --- p.5 / Chapter 1.3 --- Problems --- p.7 / Chapter 1.3.1 --- Illumination Changes and Motions in Videos --- p.7 / Chapter 1.3.2 --- Variations in Video Scene Characteristics --- p.8 / Chapter 1.3.3 --- High Complexity of Algorithms --- p.10 / Chapter 1.3.4 --- Heterogeneous Approaches to Video Segmentation --- p.10 / Chapter 1.4 --- Objectives and Approaches --- p.11 / Chapter 1.5 --- Organization of the Thesis --- p.13 / Chapter 2 --- Related Work --- p.15 / Chapter 2.1 --- Algorithms for Uncompressed Videos --- p.16 / Chapter 2.1.1 --- Pixel-based Method --- p.16 / Chapter 2.1.2 --- Histogram-based Method --- p.17 / Chapter 2.1.3 --- Motion-based Algorithms --- p.18 / Chapter 2.1.4 --- Color-ratio Based Algorithms --- p.18 / Chapter 2.2 --- Algorithms for Compressed Videos --- p.19 / Chapter 2.2.1 --- Algorithms based on JPEG Image Sequences --- p.19 / Chapter 2.2.2 --- Algorithms based on MPEG Videos --- p.20 / Chapter 2.2.3 --- Algorithms based on VQ Compressed Videos --- p.21 / Chapter 2.3 --- Frame Difference Analysis Methods --- p.21 / Chapter 2.3.1 --- Scene Cut Detection --- p.21 / Chapter 2.3.2 --- Gradual Transition Detection --- p.22 / Chapter 2.4 --- Speedup Techniques --- p.23 / Chapter 2.5 --- Other Approaches --- p.24 / Chapter 3 --- Analysis and Enhancement of Existing Algorithms --- p.25 / Chapter 3.1 --- Introduction --- p.25 / Chapter 3.2 --- Video Segmentation Algorithms --- p.26 / Chapter 3.2.1 --- Frame Difference Metrics --- p.26 / Chapter 3.2.2 --- Frame Difference Analysis Methods --- p.29 / Chapter 3.3 --- Analysis of Feature Extraction Algorithms --- p.30 / Chapter 3.3.1 --- Pair-wise pixel comparison --- p.30 / Chapter 3.3.2 --- Color histogram comparison --- p.34 / Chapter 3.3.3 --- Pair-wise block-based comparison of DCT coefficients --- p.38 / Chapter 3.3.4 --- Pair-wise pixel comparison of DC-images --- p.42 / Chapter 3.4 --- Analysis of Scene Change Detection Methods --- p.45 / Chapter 3.4.1 --- Global Threshold Method --- p.45 / Chapter 3.4.2 --- Sliding Window Method --- p.46 / Chapter 3.5 --- Enhancements and Modifications --- p.47 / Chapter 3.5.1 --- Histogram Equalization --- p.49 / Chapter 3.5.2 --- DD Method --- p.52 / Chapter 3.5.3 --- LA Method --- p.56 / Chapter 3.5.4 --- Modification for pair-wise pixel comparison --- p.57 / Chapter 3.5.5 --- Modification for pair-wise DCT block comparison --- p.61 / Chapter 3.6 --- Conclusion --- p.69 / Chapter 4 --- Color Difference Histogram --- p.72 / Chapter 4.1 --- Introduction --- p.72 / Chapter 4.2 --- Color Difference Histogram --- p.73 / Chapter 4.2.1 --- Definition of Color Difference Histogram --- p.73 / Chapter 4.2.2 --- Sparse Distribution of CDH --- p.76 / Chapter 4.2.3 --- Resolution of CDH --- p.77 / Chapter 4.2.4 --- CDH-based Inter-frame Similarity Measure --- p.77 / Chapter 4.2.5 --- Computational Cost and Discriminating Power --- p.80 / Chapter 4.2.6 --- Suitability in Scene Change Detection --- p.83 / Chapter 4.3 --- Insensitivity to Illumination Changes --- p.89 / Chapter 4.3.1 --- Sensitivity of CDH --- p.90 / Chapter 4.3.2 --- Comparison with other feature extraction algorithms --- p.93 / Chapter 4.4 --- Orientation and Motion Invariant --- p.96 / Chapter 4.4.1 --- Camera Movements --- p.97 / Chapter 4.4.2 --- Object Motion --- p.100 / Chapter 4.4.3 --- Comparison with other feature extraction algorithms --- p.100 / Chapter 4.5 --- Performance of Scene Cut Detection --- p.102 / Chapter 4.6 --- Time Complexity Comparison --- p.105 / Chapter 4.7 --- Extension to DCT-compressed Images --- p.106 / Chapter 4.7.1 --- Performance of scene cut detection --- p.108 / Chapter 4.8 --- Conclusion --- p.109 / Chapter 5 --- Scene Change Detection --- p.111 / Chapter 5.1 --- Introduction --- p.111 / Chapter 5.2 --- Previous Approaches --- p.112 / Chapter 5.2.1 --- Scene Cut Detection --- p.112 / Chapter 5.2.2 --- Gradual Transition Detection --- p.115 / Chapter 5.3 --- DD Method --- p.116 / Chapter 5.3.1 --- Detecting Scene Cuts --- p.117 / Chapter 5.3.2 --- Detecting 1-frame Transitions --- p.121 / Chapter 5.3.3 --- Detecting Gradual Transitions --- p.129 / Chapter 5.4 --- Local Thresholding --- p.131 / Chapter 5.5 --- Experimental Results --- p.134 / Chapter 5.5.1 --- Performance of CDH+DD and CDH+DL --- p.135 / Chapter 5.5.2 --- Performance of DD on other features --- p.144 / Chapter 5.6 --- Conclusion --- p.150 / Chapter 6 --- Motion Vector Based Approach --- p.151 / Chapter 6.1 --- Introduction --- p.151 / Chapter 6.2 --- Previous Approaches --- p.152 / Chapter 6.3 --- MPEG-I Video Stream Format --- p.153 / Chapter 6.4 --- Derivation of Frame Differences from Motion Vector Counts --- p.156 / Chapter 6.4.1 --- Types of Frame Pairs --- p.156 / Chapter 6.4.2 --- Conditions for Scene Changes --- p.157 / Chapter 6.4.3 --- Frame Difference Measure --- p.159 / Chapter 6.5 --- Experiment --- p.160 / Chapter 6.5.1 --- Performance of MV --- p.161 / Chapter 6.5.2 --- Performance Enhancement --- p.162 / Chapter 6.5.3 --- Limitations --- p.163 / Chapter 6.6 --- Conclusion --- p.164 / Chapter 7 --- Conclusion and Future Work --- p.165 / Chapter 7.1 --- Contributions --- p.165 / Chapter 7.2 --- Future Work --- p.169 / Chapter 7.3 --- Conclusion --- p.171 / Bibliography --- p.174 / Chapter A --- Sample Videos --- p.180 / Chapter B --- List of Abbreviations --- p.183

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_322324
Date January 1998
ContributorsLam, Cheung Fai., Chinese University of Hong Kong Graduate School. Division of Computer Science and Engineering.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, bibliography
Formatprint, xviii, 183 leaves : ill. (some col.) ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0034 seconds