Return to search

A framework for distributed 3D graphics applications based on compression and streaming

With the development of the computer networks, mainly the Internet, it became easier to develop applications where the execution is shared between a local computer, the Client, and one located on the other side of the network communication channel, the Server. The hardware advancements in the recent years made it possible to display 3D graphics (games, map navigation, virtual worlds) on mobile devices. However, executing these complex applications on the client terminal is not possible without reducing the quality of the displayed graphics or lowering its processing requirements. Different solutions have already been proposed in academic publications; however none of them satisfies all requirements. The objective of this thesis is to propose an alternative solution for a new client-server architecture where the connectedness of the mobile devices is fully exploited. Several main requirements are addressed: - Minimize the network traffic, - Reduce the required computational power on the terminal, and - Preserve the user experience compared with local execution. First a formal framework is designed that can effectively define and model distributed applications for 3D graphics. Then a model of new architecture is presented, that overcomes the disadvantages of the architectures presented in the state of the art. The core of the architecture is the MPEG-4 standard, which is used to transfer the data between the server and the client in a compressed manner. The last part of explores the design of architectures optimized for running on mobile devices. The design of the new client-server architecture is validated by implementing a game and running simulations.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00711805
Date31 March 2011
CreatorsArsov, Ivica
PublisherInstitut National des Télécommunications
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageEnglish
TypePhD thesis

Page generated in 0.0016 seconds