Return to search

Comparison of Multiple Models for Diabetes Using Model Averaging

Pharmacometrics is widely used in drug development. Models are developed to describe pharmacological measurements with data gathered from a clinical trial. The information can then be applied to, for instance, safely establish dose-response relationships of a substance. Glycated hemoglobin (HbA1c) is a common biomarker used by models within antihyperglycemic drug development, as it reflects the average plasma glucose level over the previous 8-12 weeks. There are five different nonlinear mixed-effects models that describes HbA1c-formation. They use different biomarkers such as mean plasma glucose (MPG), fasting plasma glucose (FPG), fasting plasma insulin (FPI) or a combination of those. The aim of this study was to compare their performances on a population and an individual level using model averaging (MA) and to explore if reduced trial durations and different treatment could affect the outcome. Multiple weighting methods were applied to the MA workflow, such as the Akaike information criterion (AIC), cross-validation (CV) and a bootstrap model averaging method. Results show that in general, models that use MPG to describe HbA1c-formation on a population level could potentially outperform models using other biomarkers, however, models have shown similar performance on individual level. Further studies on the relationship between biomarkers and model performances must be conducted, since it could potentially lay the ground for better individual HbA1c-predictions. It can then be applied in antihyperglycemic drug development and to possibly reduce sample sizes in a clinical trial. With this project, we have illustrated how to perform MA on the aforementioned models, using different biomarkers as well as the difference between model weights on a population and individual level.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-448168
Date January 2021
CreatorsAl-Mashat, Alex
PublisherUppsala universitet, Institutionen för farmaci
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0019 seconds