In cellular MRI, micrometer-sized iron oxide particles (MPIO) are a more sensitive contrast agent for tracking inflammatory-cell migration compared to ultra-small superparamagnetic iron oxide particles (USPIO). Inflammation, which promotes adverse tissue remodeling, is known to occur in the viable myocardium adjacent to the necrosed area after a myocardial infarction (MI). This study investigated the temporal relationship between inflammatory cell infiltration and cardiac function during tissue remodeling post-MI using MPIO-enhanced MRI. The MPIO were injected into 7 C57Bl/6 mice (MI+MPIO group) via intravenous administration. The MI was induced 7 days post-MPIO injection. As control groups, 7 mice (Sham+MPIO group) underwent sham-operated surgery without myocardial injury post-MPIO injection and another 6 mice (MI-MPIO group) underwent MI surgery without MPIO injection. MRIs performed post-MI showed a significant signal attenuation at the MI zone in the MI+MPIO group compared to the control groups. The findings suggested that the inflammatory cells containing MPIO infiltrated into the myocardial injury site. Cardiac function was also measured and correlated with the labeled-cell infiltration at the MI site. This study demonstrated a noninvasive technique for monitoring inflammatory cell migration using the MPIO contrast agent. This MPIO-enhanced MRI technique could provide additional insight concerning cardiac disease progression that would improve therapeutic treatment for MI patients.
Identifer | oai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/33883 |
Date | 08 April 2009 |
Creators | Yang, Yidong |
Publisher | Georgia Institute of Technology |
Source Sets | Georgia Tech Electronic Thesis and Dissertation Archive |
Detected Language | English |
Type | Thesis |
Page generated in 0.0015 seconds