The market penetration of mobile access devices with multiple network interfaces has increased dramatically over the last few years. As a consequence, the quest for a widespread multi-path transport protocol that takes advantage of all available interfaces simultaneously to increase data throughput and improve robustness, has received considerable attention. One prominent protocol introduced by the IETF is Multipath TCP (MPTCP). MPTCP is an extension to the predominant single-path transport protocol, the Transport Control Protocol (TCP) that enables multihomed devices to aggregate available resources transparently to the applications. Combining multiple radio access technologies, like LTE and Wi-Fi, with diverse characteristics in terms of transmission rates and fluctuations opens for novel challenges that may disrupt and even harm the data throughput. Therefore MPTCP must take path heterogeneity into account. For MPTCP to supersede single-path TCP it is required that MPTCP always achieve at least the throughput of the best individual TCP path. This thesis investigates if MPTCP with uncoupled congestion control fulfills this condition, and if so, how much it improves the throughput. By examining the protocol in a deterministic emulated environment defined by the characteristics of LTE, we conclude two key factors impacting the outcome: the download size and the difference in characteristics between the paths. Our experiments show that MPTCP overall fulfills this task, especially during path homogeneity with near aggregated results. But we also show that MPTCP may decrease data throughput with 16% compared to TCP during path heterogeneity. Hence MPTCP does not always fulfill the goal of throughput. We therefore conclude further intelligence is needed for the packet scheduling mechanism to avoid throughput degradation in the initial phase of a transmission.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-129123 |
Date | January 2016 |
Creators | Pyk, Axel |
Publisher | Linköpings universitet, Databas och informationsteknik, Linköpings universitet, Tekniska fakulteten |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0015 seconds