Speech intelligibility represents how comprehensible a speech is. It is more important than speech quality in some applications. Single channel speech intelligibility enhancement is much more difficult than multi-channel intelligibility enhancement. It has recently been reported that training-based single channel speech intelligibility enhancement algorithms perform better than Signal to Noise Ratio (SNR) based algorithm. In this thesis, a training-based Deep Neural Network (DNN) is used to improve single channel speech intelligibility. To increase the performance of the DNN, the Multi-Resolution Cochlea Gram (MRCG) feature set is used as the input of the DNN. MATLAB objective test results show that the MRCG-DNN approach is more robust than a Gaussian Mixture Model (GMM) approach. The MRCG-DNN also works better than other DNN training algorithms. Various conditions such as different speakers, different noise conditions and reverberation were tested in the thesis.
Identifer | oai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/34472 |
Date | January 2016 |
Creators | Li, Dongfu |
Contributors | Bouchard, Martin |
Publisher | Université d'Ottawa / University of Ottawa |
Source Sets | Université d’Ottawa |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.0021 seconds