Return to search

Réduction de l'espace de recherche du Problème de la Somme Coloration Minimum d'un graphe

Le Problème de la Somme Coloration Minimum (MSCP) d'un graphe est un problème d'optimisation combinatoire dont l'objectif est de déterminer une coloration valide minimisant la somme des poids associés aux couleurs utilisées. Le nombre minimum de couleurs dans une solution optimale de MSCP est appelé la force du graphe, et la somme des poids des couleurs utilisées est appelée la somme chromatique du graphe. L'objectif de cette thèse a été d'étudier MSCP afin de proposer de nouvelles approches permettant sa résolution. La contribution de cette thèse est double. Premièrement, nous avons introduit deux nouvelles bornes supérieures de la force d'un graphe et une nouvelle borne inférieure de la somme chromatique, basées sur la notion de motif que nous avons adapté de la littérature. L'intérêt majeur de ces travaux est la réduction de l'espace des solutions de MSCP. Deuxièmement, nous avons proposé plusieurs approches de résolution exacte de MSCP. La première méthode consiste en une modélisation de MSCP en un formalisme MaxSAT partiel pondéré ou MinSAT partiel pondéré afin d'utiliser les solveurs MaxSAT/MinSAT de l'état de l'art pour résoudre MSCP. Nous avons montré que notre borne de la force du graphe permet de réduire grandement la taille des instances MaxSAT/MinSAT obtenues et de rendre les solveurs MaxSAT compétitifs pour résoudre MSCP. Les deux autres méthodes de résolution proposées sont des approches de type Branch-and-Bound appelées BBMSCP et 3LMSCP. La différence entre BBMSCP et 3LMSCP est que 3LMSCP exploite la partition du graphe en stables afin de ne pas considérer les colorations symétriques / The Minimum Sum Coloring Problem (MSCP) of a graph is an optimization problem whose the aim is to find a valid coloring such that the sum of weights associated to the used color is minimum. The minimum number of colors needed in an optimal solution is called the strength of the graph, and the sum of weights of the colors used in an optimal solution is called the chromatic sum of the graph. The aim of this thesis was to study the MSCP in order to propose new approaches for its resolution. The contribution of the thesis is twofold. First, we have introduced two upper bounds of the strength and one lower bound of the chromatic sum of a graph, based on a notion called motif adapted from the literature. These bounds allow to reduce significantly the search space of the MSCP. Second, we have proposed several exact resolution methods for the MSCP. The first method consists in modelling the MSCP to a weighted partial MaxSAT or a weighted partial MinSAT and solves the MSCP using state-of-the-art MaxSAT/MinSAT solvers. We have showed that our upper bound of the strength allows to improve substantially the MaxSAT/MinSAT encodings, and consequently, the MaxSAT solvers are competitive to solve the MSCP. The two other resolution methods are based on the Branch-and-Bound scheme and are called BBMSCP and 3LMSCP respectively. The difference between BBMSCP and 3LMSCP is that BBMSCP explores many symmetric colorings but 3LMSCP exploits the partitions of the graph into stables to avoid symmetric colorings

Identiferoai:union.ndltd.org:theses.fr/2017AMIE0033
Date27 November 2017
CreatorsLecat, Clément
ContributorsAmiens, Li, Chumin, Lucet, Corinne
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0022 seconds