The cell cycle of budding yeast is controlled by a complex chemically reacting network of a large group of species, including mRNAs and proteins. Many mathematical models have been proposed to unravel its molecular mechanism. However, it is hard for people with less training to visually interpret the dynamics from the simulation results of these models. In this thesis, we use the visualization toolkit D3 and jQuery to design a web-based interface and help users to visualize the cell cycle simulation results. It is essentially a website where the proliferation of the wild-type and mutant cells can be visualized as dynamical animation. With the help of this visualization tool, we can easily and intuitively see many key steps in the budding yeast cell cycle procedure, such as bud emergence, DNA synthesis, mitosis, cell division, and the current populations of species. / Master of Science / The cell cycle of budding yeast is controlled by a complex chemically reacting network. Many mathematical models have been proposed to unravel its molecular mechanism. However, it is hard to visually interpret the dynamics from the simulation results of these models. In this thesis, we use the visualization toolkit D3 and jQuery to design a web-based interface and help users to visualize the cell cycle simulation results. It is essentially a webpage where the proliferation of the wild-type and mutant cells can be visualized as dynamical animation.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/78815 |
Date | 31 July 2017 |
Creators | Cui, Jing |
Contributors | Computer Science, Cao, Yang, Sandu, Adrian, Sun, Shuming |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Language | en_US |
Detected Language | English |
Type | Thesis |
Format | ETD, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0021 seconds