Les mycotoxines sont de métabolites secondaires produits par de nombreuses espèces fongiques. Les effets sanitaires induits par l’ingestion de ces substances sont bien documentés et certaines mycotoxines font désormais l’objet de réglementations quant à leurs teneurs maximales tolérables dans les aliments. Cependant, d’autres voies d’exposition à ces contaminants sont possibles. Si l’action irritante ou allergisante liée à l’inhalation de spores fongiques ou de fragments mycéliens a été démontrée, l’inhalation de mycotoxines est aussi suspectée d’induire certains troubles respiratoires ou certaines pathologies. En effet, les mycotoxines peuvent être retrouvées dans les spores mais également sur des particules plus fines facilement aérosolisables et donc susceptible d’être inhalées. Cependant, les données concernant le danger associé à l’exposition humaine aux mycotoxines par inhalation sont encore très parcellaires. Dans ce contexte, nos travaux ont eu comme objectif principal la caractérisation de l’aérosolisation des mycotoxines lors de la colonisation de différents matériaux rencontrés dans les environnements intérieurs par des moisissures toxinogènes. Tout d’abord nous avons étudié la croissance et la production de mycotoxines lors de la colonisation de matériaux de construction (papier peint, toile de verre peinte, papier peint vinyle, sapin) par trois espèces fongiques d’intérêt: Aspergillus versicolor, Penicillium brevicompactum, Stachybotrys chartarum. Ces espèces ont été choisies à cause de leur présence fréquente dans les environnements intérieurs et de leur diversité d’organisation mycélienne. De plus, ces trois espèces produisent des toxines différentes: stérigmatocystine, acide mycophénolique et trichothécènes macrocycliques pour A. versicolor, P. brevicompactum et S. chartarum, respectivement. Ces travaux ont démontré que, pendant leur développement sur les matériaux testés, les trois espèces produisent des mycotoxines. Le matériau le plus favorable au développement fongique et à la toxinogénèse est le papier peint. L'acide mycophénolique, la stérigmatocystine et les trichothécènes macrocycliques peuvent ainsi être produits à des niveaux de 1.8, 112.1 et 27.8 mg/m2, respectivement, sur ce matériau. Ces toxines peuvent ensuite être partiellement aérosolisées. Nous avons montré que l’aérosolisation dépend des espèces et de leur structure mycélienne mais aussi des conditions de culture et du flux d’air. Ce transfert dans l'air est observé après des sollicitations aérauliques qui peuvent être rencontrées facilement dans les environnements intérieurs car elles correspondent au mouvement de personne dans une pièce (0.3 m/s), à la vitesse de l'air dans les diffuseurs de plafond (2 m/s), à des coutants d’air ou des claquements de porte (6 m/s). P. brevicompactum est l’espèce la plus facile à aérosoliser. La majeure partie de la charge toxique des aérosols est retrouvée dans des particules dont la taille correspond à celle de spores ou de fragments de mycélium. Cependant, pour les trichothécènes macrocycliques, des toxines ont également été trouvées sur des particules plus petites que les spores, qui pourraient être facilement inhalées par les habitants et pénétrer profondément dans les voies respiratoires. Afin de mieux caractériser le danger réel associé à l’inhalation de ces composés, des études de cytotoxicité ont été réalisés en utilisant des cellules pulmonaires et en comparant avec les résultats observés sur cellules digestives. La toxicité sur cellules pulmonaires est comparable à celle observée sur cellules digestives. Les trichothécènes macrocycliques sont beaucoup plus toxiques que les autres toxines testées avec des IC50 de l’ordre du ng/ml. Au final, nous avons évalué la persistance de ces contaminants lors de l’application d’eau de javel, procédé de décontamination le plus fréquemment utilisé. Nous avons montré qu’une procédure de nettoyage normale ne permet qu’une élimination partielle des moisissures. / Mycotoxins are secondary metabolites produced by many fungal species. Health effects induced by the ingestion of these substances are well documented and some mycotoxins are now regulated for their maximum tolerable levels in foods. However, other routes of exposure to these contaminants are possible. Thus, if irritating or allergenic reactions related to the inhalation of fungal spores or mycelial fragments have been demonstrated, inhalation of mycotoxins is also suspected to be causing certain respiratory disorders or certain pathologies. Indeed, mycotoxins can be found in spores but also on finer particles which are easily aerosolized and therefore likely to be inhaled. However, data on the hazard associated with human exposure to mycotoxins by inhalation are still very fragmented. In this context, our main objective was to characterize the aerosolization of mycotoxins during the colonization of different materials encountered in indoor environments by toxinogenic molds. First we studied growth and production of mycotoxins during the colonization of building materials (wallpaper, painted fiberglass wallpaper, vinyl wallpaper, fir, fiberglass) by three fungal species of interest: Aspergillus versicolor, Penicillium brevicompactum, Stachybotrys chartarum. These species were chosen because of their frequent presence in indoor environments and their diverse mycelial organization. In addition, these three species produce different toxins: sterigmatocystin, mycophenolic acid and macrocyclic trichothecenes for A. versicolor, P. brevicompactum and S. chartarum, respectively. These studies have shown that, during their development on tested materials, three species produce mycotoxins. The most favorable material for fungal development and toxinogenesis is wallpaper. Mycophenolic acid, sterigmatocystin and macrocyclic trichothecenes can thus be produced at levels of 1.8, 112.1 and 27.8 mg/m2, respectively, on this material. These toxins can then be partially aerosolized. We have shown that aerosolization depends on species and their mycelial structure, but also on culture conditions and airflow. This transfer to air is nevertheless observed after aeraulic solicitations which can be easily encountered in indoor environments because theycorrespond to the movement of people in a room (0.3 m/s), speed of air in ceiling diffusers (2 m/s), slamming doors or air drafts when opening windows(6 m/s). P. brevicompactum showed to be the easiest to aerosolize. The major part of the aerosols’ toxic charge is found in particles whose size corresponds to that of spores or mycelial fragments. However, for macrocyclic trichothecenes, toxins were also found in particles smaller than spores, which could easily be inhaled by occupants and penetrate deep into the respiratory tract. In order to better characterize the actual hazard associated with inhalation of these compounds, cytotoxicity studies have been performed using lung cells and comparing with results observed on digestive cells. Pulmonary toxicity is comparable to that observed in digestive cells. Macrocyclic trichothecenes are much more toxic than other tested toxins with IC50 in order of ng/ml. In parallel, we analyzed the VOCs specifically produced during active mycotoxinogenesis in order to identify potential biomarkers of the actual production of mycotoxins that could be used as tools for monitoring of indoor environments. Unfortunately, this approach has not, for the moment, led to the identification of specific targets. In the end, we evaluated the persistence of these contaminants during application of bleach, the most frequently used decontamination process. We have shown that a normal cleaning procedure allows only partial removal of mold.
Identifer | oai:union.ndltd.org:theses.fr/2016INPT0125 |
Date | 05 December 2016 |
Creators | Aleksic, Brankica |
Contributors | Toulouse, INPT, Bailly, Jean-Denis, Robine, Enric |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0034 seconds