The goal of this thesis is to study the use of the Kantorovich-Rubinstein distance as to build a descriptor of sample complexity in classification problems. The idea is to use the fact that the Kantorovich-Rubinstein distance is a metric in the space of measures that also takes into account the geometry and topology of the underlying metric space. We associate to each class of points a measure and thus study the geometrical information that we can obtain from the Kantorovich-Rubinstein distance between those measures. We show that a large Kantorovich-Rubinstein distance between those measures allows to conclude that there exists a 1-Lipschitz classifier that classifies well the classes of points. We also discuss the limitation of the Kantorovich-Rubinstein distance as a descriptor.
Identifer | oai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/45418 |
Date | 13 September 2023 |
Creators | Giordano, Gaël |
Contributors | Pestov, Vladimir, Wells, George |
Publisher | Université d'Ottawa / University of Ottawa |
Source Sets | Université d’Ottawa |
Language | English |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Page generated in 0.0018 seconds