Return to search

Vehicular Traffic Flow Prediction Model Using Machine Learning-Based Model

Intelligent Transportation Systems (ITS) have attracted an increasing amount of attention in recent years. Thanks to the fast development of vehicular computing hardware, vehicular sensors and citywide infrastructures, many impressive applications have been proposed under the topic of ITS, such as Vehicular Cloud (VC), intelligent traffic controls, etc. These applications can bring us a safer, more efficient, and also more enjoyable transportation environment. However, an accurate and efficient traffic flow prediction system is needed to achieve these applications, which creates an opportunity for applications under ITS to deal with the possible road situation in advance. To achieve better traffic flow prediction performance, many prediction methods have been proposed, such as mathematical modeling methods, parametric methods, and non-parametric methods. It is always one of the hot topics about how to implement an efficient, robust and accurate vehicular traffic prediction system.

With the help of Machine Learning-based (ML) methods, especially Deep Learning-based (DL) methods, the accuracy of the prediction model is increased. However, we also noticed that there are still many open challenges under ML-based vehicular traffic prediction model real-world implementation. Firstly, the time consumption for DL model training is relatively huge compared to parametric models, such as ARIMA, SARIMA, etc. Second, it is still a hot topic for the road traffic prediction that how to capture the special relationship between road detectors, which is affected by the geographic correlation, as well as the time change. The last but not the least, it is important for us to implement the prediction system in the real world; meanwhile, we should find a way to make use of the advanced technology applied in ITS to improve the prediction system itself.

In our work, we focus on improving the features of the prediction model, which can be helpful for implementing the model in the real word. Firstly, we introduced an optimization strategy for ML-based models' training process, in order to reduce the time cost in this process. Secondly, We provide a new hybrid deep learning model by using GCN and the deep aggregation structure (i.e., the sequence to sequence structure) of the GRU. Meanwhile, in order to solve the real-world prediction problem, i.e., the online prediction task, we provide a new online prediction strategy by using refinement learning. In order to further improve the model's accuracy and efficiency when applied to ITS, we provide a parallel training strategy by using the benefits of the vehicular cloud structure.

Identiferoai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/42288
Date14 June 2021
CreatorsWang, Jiahao
ContributorsBoukerche, Azzedine
PublisherUniversité d'Ottawa / University of Ottawa
Source SetsUniversité d’Ottawa
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf

Page generated in 0.0019 seconds