The thesis aims to develop a deep learning model for facial emotion recognition using Convolutional Neural Network algorithm and Multiclass Classification along with Hyper-parameter tuning using Bayesian Optimization to improve the performance of the model. The developed model recognizes seven basic emotions in images of human beings such as fear, happy, surprise, sad, neutral, disgust and angry using FER-2013 dataset.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:bth-23359 |
Date | January 2022 |
Creators | Bejjagam, Lokesh, Chakradhara, Reshmi |
Publisher | Blekinge Tekniska Högskola, Institutionen för datavetenskap |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0109 seconds