Return to search

Facial Emotion Recognition using Convolutional Neural Network with Multiclass Classification and Bayesian Optimization for Hyper Parameter Tuning.

The thesis aims to develop a deep learning model for facial emotion recognition using Convolutional Neural Network algorithm and Multiclass Classification along with Hyper-parameter tuning using Bayesian Optimization to improve the performance of the model. The developed model recognizes seven basic emotions in images of human beings such as fear, happy, surprise, sad, neutral, disgust and angry using FER-2013 dataset.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:bth-23359
Date January 2022
CreatorsBejjagam, Lokesh, Chakradhara, Reshmi
PublisherBlekinge Tekniska Högskola, Institutionen för datavetenskap
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0109 seconds