Return to search

Strojový překlad s využitím syntaktické analýzy / Machine Translation Using Syntactic Analysis

Machine Translation Using Syntactic Analysis Martin Popel This thesis describes our improvement of machine translation (MT), with a special focus on the English-Czech language pair, but using techniques ap- plicable also to other languages. First, we present multiple improvements of the deep-syntactic system TectoMT. For instance, we implemented a novel context-sensitive translation model, comparing several machine learning ap- proaches. We also adapted TectoMT to other domains and languages. Sec- ond, we present Transformer - a state-of-the-art end-to-end neural MT sys- tem. We analyzed in detail the effect of several training hyper-parameters. With our optimized training, the system outperformed the best result on the WMT2017 test set by +1.0 BLEU. We further extended this system by uti- lization of monolingual training data and by a new type of backtranslation (+2.8 BLEU compared to the baseline system). In addition, we leveraged domain adaptation and the effect of "translationese" (i.e which language in parallel data is the original and which is the translation) to optimize MT systems for original-language and translated-language data (gaining further +0.2 BLEU). Our improved neural MT system significantly (p¡0.05) out- performed all other systems in English-Czech and Czech-English WMT2018 shared tasks,...

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:391349
Date January 2018
CreatorsPopel, Martin
ContributorsŽabokrtský, Zdeněk, Ircing, Pavel, Čmejrek, Martin
Source SetsCzech ETDs
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/doctoralThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0016 seconds