Return to search

The Design and Implementation of a Yield Monitor for Sweetpotatoes

A study of the soil characteristics, weather conditions, and effect of management skills on the yield of the agricultural crop requires site-specific details, which involves large amount of labor and resources, compared to the traditional whole field based analysis. This thesis discusses the design and implemention of yield monitor for sweetpotatoes grown in heavy clay soil. A data acquisition system is built and image segmentation algorithms are implemented. The system performed with an R-Square value of 0.80 in estimating the yield. The other main contribution of this thesis is to investigate the effectiveness of statistical methods and neural networks to correlate image-based size and shape to the grade and weight of the sweetpotatoes. An R-Square value of 0.88 and 0.63 are obtained for weight and grade estimations respectively using neural networks. This performance is better compared to statistical methods with an R-Square value of 0.84 weight analysis and 0.61 in grade estimation.

Identiferoai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-5306
Date11 May 2002
CreatorsGogineni, Swapna
PublisherScholars Junction
Source SetsMississippi State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations

Page generated in 0.0017 seconds