Au cours de cette thèse, nous avons étudié les mécanismes d'induction à l'origine de l'instabilité dynamo dans des écoulements de métaux liquides à grand nombre de Reynolds magnétique (Rm). Les écoulements considérés sont pleinement turbulents et présentent des fluctuations sur une large gamme d'échelles spatio-temporelles. En mesurant le champ induit lorsqu'un champ extérieur est appliqué à un écoulement de gallium liquide (Rm<5) ou de sodium liquide (Rm<50), nous nous sommes intéressé aux questions suivantes : Existe-t-il un effet coopératif des petites échelles de la turbulence pouvant contribuer au champ induit à grande échelle ? Si les résultats de la théorie de champ moyen suggèrent la possibilité d'un effet coopératif pouvant induire un champ magnétique à grande échelle, les mesures effectuées dans les expériences du tore de Perm, et VKG de Lyon, montrent que la contribution des petites échelles est négligeable devant celle des grandes échelles de l'écoulement. Comment décrire les effets d'induction produits par les mouvements à grande échelle ? En mesurant, à bas Rm(Rm<5), les profils de champ induit le long d'un rayon dans l'expérience VKG, nous montrons que l'écoulement de von Karman contrarotatif présente un comportement turbulent à grande échelle. L'écoulement passe 50% du temps dans des configurations très éloignées de sa structure moyenne, ce qui provoque de larges fluctuations des mécanismes d'induction, et peut les rendre inefficaces pendant des durées supérieures au temps de diffusion magnétique. Les résultats expérimentaux obtenus, tant dans le gallium que dans le sodium, suggèrent que le caractère turbulent de l'écoulement ne peut avoir qu'un impact faible sur le seuil de l'instabilité alors les fluctuations aux grandes échelles de l'écoulement peuvent remettre en question l'analyse cinématique basées sur le seul écoulement moyen.Dans une seconde partie de la thèse, nous explorons numériquement les mécanismes d'induction dans un écoulement constitué d'un ensemble de colonnes hélicitaires organisées le long d'un anneau. Pour un tel écoulement qui reproduit la structure des colonnes de Busse de la convection thermique dans le noyau terrestre, nous montrons, à l'aide d'une technique itérative, que des modes dipolaires et quadrupolaires peuvent être entretenus. Le quadrupôle semble toujours favorisé par rapport au dipôle et le bouclage du cycle dynamo se fait entre les composantes radiale et toroïdale du champ magnétique. Les résultats obtenus pour ce système simple soulignent le lien étroit existant entre la géométrie de l'expérience dynamo de Karlsruhe et le problème de la génération du champ magnétique terrestre dans le modèle de convection de Busse.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00011221 |
Date | 03 November 2005 |
Creators | Volk, Romain |
Publisher | Ecole normale supérieure de lyon - ENS LYON |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0019 seconds