Return to search

Serrated flow and enhanced ductility in coarse-grained Al-Mg alloys

Aluminum 5XXX alloys are of industrial importance and interest as they combine a wide range of desirable strength, forming and welding characteristics with a high resistance to corrosion. The presence of Mg in these alloys ensures favorable mechanical properties. However, the room temperature stretching performance of these alloys is limited. Moreover, Al-Mg alloys are known for being susceptible to the Portevin-LeChatelier effect when deformed at room temperature. Nevertheless, improvements in ductility can be achieved through warm forming, especially when the ductility approaches superplastic levels. / The aim of this study was to test for enhanced ductility in three coarse-grained Al-Mg alloys namely, super-pure Al-3%Mg and Al-5%Mg, and commercial AA 5056 alloy. The temperature-dependent flow stress and rate sensitivity behavior of these alloys was investigated by means of tensile testing using ASTM E8M-04 standard samples. Samples were deformed to 10% strain to allow enough deformation to occur such that serrations in the dynamic strain aging (DSA) temperature/strain rate range would be rendered visible on a stress-strain curve. Using this information, the regions of negative and higher-than-normal strain rate sensitivity ('m') were plotted and tensile tests to failure were performed in the vicinity of maximum 'm'. ASTM E2448-06 standard samples for superplasticity tensile testing were used in this case. / A maximum ductility of 170% was recorded with these samples and this was found to increase to nearly 300% when the gage length was shortened. It was observed that the DSA serrations were more prominent at lower strain rates, higher temperatures and higher Mg contents. The results of this study show clearly that if the rate sensitivity is high enough, then enhanced ductility in coarse-grained materials is possible at temperatures well below the maximum test temperature.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.115867
Date January 2008
CreatorsSamuel, Ehab.
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageDoctor of Philosophy (Department of Mining and Materials Engineering.)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 003132575, proquestno: AAINR66635, Theses scanned by UMI/ProQuest.

Page generated in 0.0021 seconds