Cardiovascular disease (CVD) is a term used to describe a variety of diseases and events that impact the heart and circulatory system. CVD is the United Kingdom's (UKs) biggest killer, causing more than 50,000 premature deaths each year. Early recognition of the potential for magnetic resonance imaging (MRI) to provide a versatile, non-ionising, non-invasive, technique for the assessment of CVD resulted in the modality becoming an area of intense interest in the research, radiology and cardiology communities. The first half of this thesis reviews some of the key developments in magnetic resonance hardware and software that have led to cardiac magnetic resonance imaging (CMRI) emerging as a reliable and reproducible tool, with a range of applications ideally suited for the evaluation of cardiac morphology, function, viability, valvular disease, perfusion, and congenital cardiomyopathies. In addition to this, the advantages and challenges of imaging at 3.0T in comparison to 1.5T are discussed. The second half of this thesis presents a number of investigations that were specifically designed to explore the capability of CMRI to accurately detect subtle age and disease related changes in the human heart. Our investigations begin with a study at 1.5T that explores the clinical and scientific significance of the less frequently used measure of right ventricular function to test the hypothesis that the inclusion of this data provides a more informative assessment of overall cardiac function. The focus then shifts to imaging at 3.0T and the challenges of optimising cardiac imaging at this field strength are discussed. Normal quantitative parameters of cardiac function are established at this field strength for the left ventricle and the left atrium of local volunteers. These values are used to investigate disease related changes in left ventricle and left atrium of distinct patient cohorts. This work concludes by investigating the impact of gadolinium-based contrast agents on the quantitative parameters of cardiac function.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:577286 |
Date | January 2012 |
Creators | Matthew, Shona |
Contributors | Dunn, Malcolm H.; Lerski, Richard; Houston, Graeme |
Publisher | University of St Andrews |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://hdl.handle.net/10023/3558 |
Page generated in 0.0019 seconds