CdSe semiconductor nanocrystals (quantum dots--QDs) with diameters ranging between 1.5 and 8 nm exhibit strong, tunable luminescence [1-5]. They have been widely investigated for their size-dependent optoelectronic properties [6], and for their potential use in optical devices [7], biological labels [8] and sensors [9]. Luminescent quantum dots (QDs) show higher photostability and narrower emission peaks compared to organic fluorophores [8]. The objective of my project was to apply QDs magnetic/luminescent nanoparticle as biological labels in cells. Luminescent CdSe QDs emit bright visible light with high quantum yield and sharp emission peak. The CdSe QDs were capped with a ZnS layer. This increased their emission efficiency and photostability due to the larger band gap of ZnS. The QDs were transferred from organic solvent (e.g. chloroform, hexane) to water by exchanging the capping group (Trioctylphosphine Oxide—TOPO) with mercaptoacetic acid. To develop a separation and detection tool for cells, we combined γ-Fe2O3 magnetic particles with CdSe/ZnS QDs in core-shell composite. The composite nanoparticles showed strong fluorescence emission and high water solubility. Different antibodies were attached to the particles through EDAC coupling. The antibody-coated particles were used to successfully separate and detect breast cancer cells in blood cells.
Identifer | oai:union.ndltd.org:uno.edu/oai:scholarworks.uno.edu:td-1146 |
Date | 21 May 2005 |
Creators | Wang, Desheng |
Publisher | ScholarWorks@UNO |
Source Sets | University of New Orleans |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | University of New Orleans Theses and Dissertations |
Page generated in 0.0019 seconds