Return to search

Investigation of multiphase reactor hydrodynamics using magnetic resonance imaging

This thesis presents an investigation on multiphase reactor hydrodynamics using magnetic resonance imaging (MRI). The study demonstrates experimental techniques by which computational and quasi-analytical fluid models may be validated. Three types of industrially-important multiphase reaction vessels are considered: a co-current upflow gas-liquid-solid bed, a co-current downward trickle bed (gas, liquid, solid), and a gas-solid fluidised bed. These reactors were selected as they commonly demonstrate local hydrodynamic anisotropy which affects the global performance of industrial units. MRI was used to obtain 2D velocity images of the gas and liquid phases in the packed beds, and of the gas and the solid phases in the fluidised bed. This study reports the first spatially resolved velocity measurements of both the gas and liquid phases in a co-current upflow bed, and the gas and solid phases of an isolated bubble in a fluidised bed. The experimental vessels were: 52 mm in diameter using 5 mm glass spheres in the upflow bed at 8 bara, 27 mm with 5 mm glass spheres in the trickle bed at 6.75 bara, and 52 mm using 1.2 mm poppy seeds as the fluidised particles at 8.5 bara. The experiments were conducted at a laboratory temperature of 25.0 ± 3.0 °C. In the upflow bed, time-averaged velocity images were acquired over a 2.5 h experimental time. This was done to capture the steady state behaviour of the vessel operating in the pulsing flow regime. The temporally-stable trickle flow state in the trickle bed was imaged over 15-100 minutes. In both packed beds, severe spatial anisotropy in the distribution of flow between pores was revealed. Furthermore, the data were used to determine classical design features such as catalyst wetting and liquid holdup which compared well with literature models. The trickle bed data were further analysed using a morphological algorithm which unambiguously identified the gas-liquid and liquid-solid interfaces. The interfacial flow fields were found to be similar to the bulk flow, with most voxels exhibiting static behaviour. The amount of interaction between the phases was found to be minimal, which is typical of the low interaction regime. A single bubble injection system was employed in the fluidised bed which allowed the injection of isolated bubbles into the incipiently fluidised bed. It also enabled the triggered acquisition of NMR data at precise time intervals. The bubble was found to be an indented ellipsoidal shape, which rose with atypical behaviour which caused it to collapse. Rise velocity was found to be consistent with theory, and the injected bubbles were sufficiently spatially reproducible to acquire 2D velocity images using single-point imaging. These velocity images showed flow behaviour characteristic of a 'fast' rising bubble, with a gas recirculation cloud 37 mm in diameter. The particle field was shown to have very high flow in the bubble wake, revealing the mechanism of bubble collapse. The flow data were compared to classical two-phase fluidisation theory, which revealed noteworthy differences in the division of flow between the particulate and bubbling regions.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:767794
Date January 2019
CreatorsRice, Nicholas Paul
ContributorsGladden, Lynn Faith
PublisherUniversity of Cambridge
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttps://www.repository.cam.ac.uk/handle/1810/288824

Page generated in 0.0018 seconds