Les fluides Magnéto-Rhéologiques (MR) de par leurs caractéristiques variant avec le champ magnétique qui leur est appliqué, sont utilisés dans la dissipation d’énergie mécanique. Ainsi, il existe de nombreux dispositifs utilisant ces fluides, par exemple des amortisseurs ou des freins, permettant de contrôler aisément leurs performances. Cependant ces dissipateurs d’énergie mécanique sont amenés à opérer dans des milieux soumis à des perturbations externes notamment des vibrations. Dans le cadre de cette thèse, nous étudions la stabilité des propriétés des fluides magnéto-rhéologiques lorsqu’ils sont perturbés par une stimulation de type vibratoire.Une comparaison analytique de l’ordre de grandeur des efforts vibratoires relativement aux efforts de cohésion magnétique ayant lieu dans le fluide laisse apparaître une possible perturbation du fluide par des vibrations.Nous avons mis en place un banc de test permettant à la fois d’injecter des perturbations vibratoires et de mesurer leur impact sur le fluide utilisé dans un mode classique de cisaillement.Dans certaines conditions, nous avons pu mesurer une diminution de la contrainte de cisaillement du fluide. La variation observée est liée à l’amplitude du mode de déformation de l’élément cisaillant. Trois directions de propagation de vibration selon un repère cylindrique sont étudiées et leurs impacts discutés. La direction normale à la surface est celle qui présente le plus d’effet. La variation maximale de la contrainte de cisaillement observée peut atteindre 40 %. Ce phénomène intervient pour des champs magnétiques faibles, inférieurs à 250 mT, et pour une vitesse de cisaillement faible, inférieure à 100 s-1.Enfin l’effet des vibrations est étudié sur des fluides de différentes viscosités et concentrations de particules, afin d’évaluer l’impact de ces derniers sur la stabilité du fluide / When subjected to a magnetic field, the Magneto-Rheological (MR) fluid increases its apparent viscosity and becomes a viscoelastic solid. They are used in applications requiring dissipation of mechanical energy such as shock absorbers or brakes. These devices operate in environments subject to external disturbances. In this thesis, we study the stability of magneto-rheological fluid properties when they are subjected to vibrations.When comparing the magnitude of the applied forces generated by the vibrations to the magnetic force between the particules it appears that these forces are of the same order. This implies a modification of the fluid behaviour.We developed a dedicated test bench allowing to induce vibration disturbances and to measure their impact on the fluid used in a shear mode configuration.We observed experimentally a decrease in the shear stress of the fluid. This variation depends on the modal deformation of the shearing element. Three propagation directions of vibration according to a cylindrical coordinate are studied and compared. The normal direction to the surface is the one with the most significant effect. The maximum shear stress variation reached was 40%. This phenomenon occurs for low magnetic fields, less than 250 mT, and low shear rate, less than 100 s-1.Finally, the vibration effect is studied on fluids with different viscosities and particle concentrations in order to assess their impact on the fluid’s stability.
Identifer | oai:union.ndltd.org:theses.fr/2019SACLX010 |
Date | 01 April 2019 |
Creators | Novikoff, Paul-Alexis |
Contributors | Université Paris-Saclay (ComUE), Hafez, Moustapha, Eck, Laurent |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.002 seconds